Insights into the mechanism of crotamine and potential targets involved in obesity-related metabolic pathways

被引:0
作者
Melendez-Martinez, David [1 ,2 ,4 ,4 ]
Morales-Martinez, Adriana [1 ,2 ,3 ,4 ,4 ,4 ]
Sierra-Valdez, Francisco [2 ]
Cossío-Ramírez, Raquel [2 ]
Lozano, Omar [1 ,3 ]
Mayolo-Deloisa, Karla [1 ,2 ]
Rito-Palomares, Marco [1 ,3 ]
Benavides, Jorge [1 ,2 ]
机构
[1] Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, N.L, Monterrey
[2] Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, N.L, Monterrey
[3] Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, N.L, Monterrey
[4] Centro de investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, Morelos, Cuernavaca
关键词
Crotamine; Dipeptidyl peptidase-IV; Glucagon like peptide-1 receptor; Molecular dynamics; Obesity; α-glucosidase;
D O I
10.1016/j.compbiomed.2024.109049
中图分类号
学科分类号
摘要
Crotamine (Ctm) is a peptide isolated from Crotalus durissus terrificus venom. This molecule has been demonstrated to diminish body weight gain and enhance browning in adipose tissue, glucose tolerance, and insulin sensitivity; hence, it has been postulated as an anti-obesogenic peptide. However, the mechanism to elicit the anti-obesogenic effects has yet to be elucidated. Thus, we investigated the possible interaction of Ctm with receptors involved in obesity-related metabolic pathways through protein-protein docking and molecular dynamics refinement. To test the anti-obesogenic mechanism of Ctm, we selected and retrieved 18 targets involved in obesity-related drug discovery from Protein Data Bank. Then, we performed protein-protein dockings. The best three Ctm-target models were selected and refined by molecular dynamics simulations. Molecular docking demonstrated that Ctm was able to interact with 13 of the 18 targets tested. Having a better docking score with glucagon-like peptide-1 receptor (GLP-1R) (−1430.2 kcal/mol), DPP-IV (dipeptidyl peptidase-IV) (−1781.7 kcal/mol) and α-glucosidase (−1232.3 kcal/mol). These three models were refined by molecular dynamics. Ctm demonstrated a higher affinity for GLP-1R (ΔG: −41.886 ± 2.289 kcal/mol). However, Ctm interaction was more stable with DPP-IV (RMSD: 0.360 ± 0.015 nm, Radius of gyration: 2.781 ± 0.009 nm). Moreover, the number of interactions and the molecular mechanics energies of Ctm residues suggest that the interaction of Ctm with these receptors is mainly mediated by basic-hydrophobic dyads Y1-K2, W31-R32, and W33-R34. Together, all these results allow elucidating a possible molecular mechanism behind the previously described anti-obesogenic effects. © 2024 The Authors
引用
收藏
相关论文
共 79 条
[21]  
Zhao F., Zhou Q., Cong Z., Hang K., Zou X., Zhang C., Chen Y., Dai A., Liang A., Ming Q., Wang M., Chen L.-N., Xu P., Chang R., Feng W., Xia T., Zhang Y., Wu B., Yang D., Zhao L., Xu H.E., Wang M.-W., Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors, Nat. Commun., 13, (2022)
[22]  
Cong Z., Zhao F., Li Y., Luo G., Mai Y., Chen X., Chen Y., Lin S., Cai X., Zhou Q., Yang D., Wang M.-W., Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with Gs proteins, Cell Discov, 10, (2024)
[23]  
Okuda M., Suwa T., Suzuki H., Yamaguchi Y., Nishimura Y., Three human RNA polymerases interact with TFIIH via a common RPB6 subunit, Nucleic Acids Res., 50, pp. 1-16, (2022)
[24]  
Zhao F., Zhang C., Zhou Q., Hang K., Zou X., Chen Y., Wu F., Rao Q., Dai A., Yin W., Shen D.-D., Zhang Y., Xia T., Stevens R.C., Xu H.E., Yang D., Zhao L., Wang M.-W., Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor, Elife, 10, (2021)
[25]  
Wu W.-L., Hao J., Domalski M., Burnett D.A., Pissarnitski D., Zhao Z., Stamford A., Scapin G., Gao Y.-D., Soriano A., Kelly T.M., Yao Z., Powles M.A., Chen S., Mei H., Hwa J., Discovery of novel tricyclic heterocycles as potent and selective DPP-4 inhibitors for the treatment of type 2 diabetes, ACS Med. Chem. Lett., 7, pp. 498-501, (2016)
[26]  
Tanwar O., Deora G.S., Tanwar L., Kumar G., Janardhan S., Alam M.M., Shaquiquzzaman M., Akhter M., Novel hydrazine derivatives as selective DPP-IV inhibitors: findings from virtual screening and validation through molecular dynamics simulations, J. Mol. Model., 20, (2014)
[27]  
Kadirvelraj R., Yang J.-Y., Sanders J.H., Liu L., Ramiah A., Prabhakar P.K., Boons G.-J., Wood Z.A., Moremen K.W., Human N -acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite, Proc. Natl. Acad. Sci. USA, 115, pp. 4637-4642, (2018)
[28]  
Roig-Zamboni V., Cobucci-Ponzano B., Iacono R., Ferrara M.C., Germany S., Bourne Y., Parenti G., Moracci M., Sulzenbacher G., Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease, Nat. Commun., 8, (2017)
[29]  
Shao Z., Tan Y., Shen Q., Hou L., Yao B., Qin J., Xu P., Mao C., Chen L.-N., Zhang H., Shen D.-D., Zhang C., Li W., Du X., Li F., Chen Z.-H., Jiang Y., Xu H.E., Ying S., Ma H., Zhang Y., Shen H., Molecular insights into ligand recognition and activation of chemokine receptors CCR2 and CCR3, Cell Discov, 8, (2022)
[30]  
Tan Q., Zhu Y., Li J., Chen Z., Han G.W., Kufareva I., Li T., Ma L., Fenalti G., Li J., Zhang W., Xie X., Yang H., Jiang H., Cherezov V., Liu H., Stevens R.C., Zhao Q., Wu B., Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex, Science, 341, pp. 1387-1390, (2013)