共 32 条
[1]
Liu L., Chen S., Small M., Moore J. M., Shang K., Global stability and optimal control of epidemics in heterogeneously structured populations exhibiting adaptive behavior, Commun. Nonlinear Sci. Numer. Simul, 126, (2023)
[2]
Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fract. Calculus Models Numer. Methods, 3, (2012)
[3]
Diethelm K., Ford N. J., Analysis of fractional di_erential equations, J. Math. Anal. Appl, 265, pp. 229-248, (2002)
[4]
Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory Appl. Fract. Di_er. Equat, 204, (2006)
[5]
Abdulwasaa M. A., Abdo M. S., Shah K., Nofal T. A., Panchal S. K., Kawale S. V., Et al., Fractalfractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys, 20, (2021)
[6]
Dhar B., Gupta P. K., Sajid M., Solution of a dynamical memory e_ect COVID-19 infection system with leaky vaccination e_cacy by non-singular kernel fractional derivatives, Math. Biosci. Eng, 19, pp. 4341-4367, (2022)
[7]
Agarwal R., Jain S., Agarwal R. P., Mathematical modeling and analysis of dynamics of cytosolic calcium ion in astrocytes using fractional calculus, J. Fract. Calculus Appl, 9, pp. 1-12, (2018)
[8]
Agarwal R., Kritika S. D., Kumar D., Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator, Discrete Contin. Dynam. Syst.-S, 14, pp. 3387-3399, (2021)
[9]
Pandey R. M., Chandola A., Agarwal R., Mathematical model and interpretation of crowding e_ects on SARS-CoV-2 using Atangana-Baleanu fractional operator, Methods of Mathematical Modeling, pp. 41-58, (2022)
[10]
Mishra J., Agarwal R., Atangana A., Math. Model. Soft Comput. Epidemiol, (2020)