Cognitive State Classification Using Convolutional Neural Networks on Gamma-Band EEG Signals

被引:9
作者
Avital, Nuphar [1 ,2 ]
Nahum, Elad [3 ]
Levi, Gal Carmel [3 ]
Malka, Dror [3 ]
机构
[1] Bar Ilan Univ, Fac Educ, IL-5290002 Ramat Gan, Israel
[2] Talpiot Coll Educ, Early Childhood Educ, IL-5810201 Holon, Israel
[3] Holon Inst Technol HIT, Fac Engn, IL-5810201 Holon, Israel
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
EEG; CNN; gamma band; deep learning;
D O I
10.3390/app14188380
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces a novel methodology for classifying cognitive states using convolutional neural networks (CNNs) on electroencephalography (EEG) data of 41 students, aimed at streamlining the traditionally labor-intensive analysis procedures utilized in EEGLAB. Concentrating on the 30-40 Hz frequency range within the gamma band, we developed a CNN model to analyze EEG signals recorded from the inferior parietal lobule during various cognitive tasks. The model demonstrated substantial efficacy, achieving an accuracy of 91.42%, precision of 71.41%, and recall of 72.51%, effectively distinguishing between high and low gamma activity states. This performance surpasses traditional machine learning methods for EEG analysis, such as support vector machines and random forests, which typically achieve accuracies between 70-85% for similar tasks. Our approach offers significant time savings over manual EEGLAB methods. The integration of event-related spectral perturbation (ERSP) analysis with a novel CNN architecture enables capture of both fine-grained and broad spectral EEG features, advancing the field of computational neuroscience. This research has implications for brain-computer interfaces, clinical diagnostics, and cognitive monitoring, offering a more efficient and accurate alternative to current EEG analysis methods.
引用
收藏
页数:16
相关论文
共 32 条
[1]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[2]   Implementation of artificial intelligence and machine learning-based methods in brain-computer interaction [J].
Barnova, Katerina ;
Mikolasova, Martina ;
Kahankova, Radana Vilimkova ;
Jaros, Rene ;
Kawala-Sterniuk, Aleksandra ;
Snasel, Vaclav ;
Mirjalili, Seyedali ;
Pelc, Mariusz ;
Martinek, Radek .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
[3]   Evidence for a critical role of the left inferior parietal lobule and underlying white matter connectivity in proficient text reading [J].
Boissonneau, Sebastien ;
Lemaitre, Anne-Laure ;
Herbet, Guillaume ;
Ng, Sam ;
Duffau, Hugues ;
Moritz-Gasser, Sylvie .
JOURNAL OF NEUROSURGERY, 2023, 138 (05) :1433-1442
[4]   Abstract Representations of Object-Directed Action in the Left Inferior Parietal Lobule [J].
Chen, Quanjing ;
Garcea, Frank E. ;
Jacobs, Robert A. ;
Mahon, Bradford Z. .
CEREBRAL CORTEX, 2018, 28 (06) :2162-2174
[5]   Neural networks within multi-core optic fibers [J].
Cohen, Eyal ;
Malka, Dror ;
Shemer, Amir ;
Shahmoon, Asaf ;
Zalevsky, Zeev ;
London, Michael .
SCIENTIFIC REPORTS, 2016, 6
[6]   Deep learning for electroencephalogram (EEG) classification tasks: a review [J].
Craik, Alexander ;
He, Yongtian ;
Contreras-Vidal, Jose L. .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
[7]   GA-CNN: Analyzing student's cognitive skills with EEG data using a hybrid deep learning approach [J].
Devi, D. ;
Sophia, S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
[8]  
eeglab, Independent Component Analysis for Artifact Removal-Issues with Data Rank Deficiencies
[9]  
eego&TRADE, mylab ANT Neuro,
[10]   Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient [J].
Foody, Giles M. .
PLOS ONE, 2023, 18 (10)