Portable 4D Snapshot Hyperspectral Imager for Fastspectral and Surface Morphology Measurements

被引:0
作者
Luo J. [1 ]
Lin Z. [1 ]
Xing Y. [1 ]
Forsberg E. [1 ]
Wu C. [1 ]
Zhu X. [2 ]
Guo T. [1 ]
Wang G. [1 ]
Bian B. [3 ]
Wu D. [4 ]
He S. [1 ]
机构
[1] Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, College of Optical Science and Engineering, Zhejiang University, Hangzhou
[2] Taizhou Agility Smart Technologies Co., Ltd, Taizhou
[3] Ningbo Electric Power Company, State Grid Corporation, Ningbo
[4] PopSmart Technology Co., Ltd, Ningbo
来源
Progress in Electromagnetics Research | 2022年 / 173卷
基金
中国国家自然科学基金;
关键词
Cameras - Liquid crystals - Morphology - Cost effectiveness - Surface morphology - Spectroscopy;
D O I
10.2528/PIER22021702
中图分类号
学科分类号
摘要
A portable 4D snapshot hyperspectral imager (P4DS imager) with compact size, fast imaging time, low cost, and simple design is proposed and demonstrated. The key components of the system are a projector, a liquid crystal tunable filter (LCTF), and a camera. It has two operating modes depending on the set state of the LCTF: a 3D light measurement mode that produces a 3D point cloud reconstruction of an object and a hyperspectral imaging mode yielding spectral data. The camera imaging plane is the same for both operating modes allowing the collected spatial and spectral data to be directly fused into a 4D data set without post-processing. The P4DS imager has excellent performance with a spectral resolution of 10 nm, a spatial depth accuracy of 55.7 µm, and a total 4D imaging time of 0.8 s. 4D imaging experiments of three different samples, namely, a colored figurine, green broccoli, and a human face, are presented to demonstrate the efficiency and applicability of the system. Due to being cost-effective, portable, and good imaging performance, the proposed system is suitable for commercialization and mass production. © 2022, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:25 / 36
页数:11
相关论文
共 45 条
  • [11] Studer V., Bobin J., Chahid M., Mousavi H. S., Candes E., Dahan M., Compressive fluorescence microscopy for biological and hyperspectral imaging, Proceedings of the National Academy of Sciences of the United States of America, 109, 26, pp. E1679-E1687, (2012)
  • [12] Yang Q. L., Niu B., Gu S. Q., Ma J. G., Zhao C. M., Chen Q., Guo D. H., Deng X. J., Yu Y. A., Zhang F., Rapid detection of nonprotein nitrogen adulterants in milk powder using point-scan raman hyperspectral imaging technology, ACS Omega, 7, 2, pp. 2064-2073, (2022)
  • [13] Yao X. L., Cai F. H., Zhu P. Y., Fang H. X., Li J. W., He S. L., Non-invasive and rapid pH monitoring for meat quality assessment using a low-cost portable hyperspectral scanner, Meat Sci, 152, pp. 73-80, (2019)
  • [14] Gomez-Sanchis J., Blasco J., Soria-Olivas E., Lorente D., Escandell-Montero P., Martinez-Martinez J. M., Martinez-Sober M., Aleixos N., Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicilliumdigitatum and Penicilliumitalicum using the most relevant bands and non-linear classifiers, Postharvest Biol. Technol, 82, pp. 76-86, (2013)
  • [15] Abdlaty R., Orepoulos J., Sinclair P., Berman R., Fang Q. Y., High throughput AOTF hyperspectral imager for randomly polarized light, Photonics, 5, 1, (2018)
  • [16] Gat N., Imaging spectroscopy using tunable filters: A review, Conference on Wavelet Applications VII, 4056, pp. 50-64, (2000)
  • [17] Wang X., Zhang Y., Ma X., Xu T., Arce G. R., Compressive spectral imaging system based on liquid crystal tunable filter, Opt. Express, 26, 19, pp. 25226-25243, (2018)
  • [18] Gebhart S. C., Thompson R. C., Mahadevan-Jansen A., Liquid-crystal tunable filter spectral imaging for brain tumor demarcation, Appl. Opt, 46, 10, pp. 1896-1910, (2007)
  • [19] Nalpantidis L., Sirakoulis G. C., Gasteratos A., Review of stereo vision algorithms: From software to hardware, Int. J. Optomechatronics, 2, 4, pp. 435-462, (2008)
  • [20] Dhond U. R., Aggarwal J. K., Structure from stereo — A review, IEEE Transactions on Systems Man and Cybernetics, 19, 6, pp. 1489-1510, (1989)