On Some Three-color Ramsey Numbers of Paths and Cycles

被引:0
作者
Chen M. [1 ,2 ]
Li Y. [1 ]
机构
[1] School of Mathematical Sciences, Tongji University, Shanghai
[2] College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing, 314000, Zhejiang
来源
Tongji Daxue Xuebao/Journal of Tongji University | 2018年 / 46卷 / 07期
关键词
3-color Ramsey number; Cycle; Path;
D O I
10.11908/j.issn.0253-374x.2018.07.018
中图分类号
学科分类号
摘要
For given graphs G1,G2,...,Gk, where k≥2, the k-color Ramsey number R(G1, G2,..., Gk)is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with color i, for some 1≤i≤k. In this note, we provide the exact value for 3-color Ramsey R(Pm, Pm,Cn), where n is larger than m. © 2018, Editorial Department of Journal of Tongji University. All right reserved.
引用
收藏
页码:988 / 990
页数:2
相关论文
共 11 条
[1]  
Bollobas B., Modern Graph Theory, (1998)
[2]  
Radziszowski S.P., Small ramsey numbers, Electronic Journal of Combinatorics, 1, 4, (2011)
[3]  
Gyarfs A., Ruszinko M., Sakozy G.N., Et al., Three color ramsey numbers for paths, Combinatorica, 27, 1, (2007)
[4]  
Benevides F.S., Skokan J., The 3-colored ramsey number of even cycles, Journal of Combinatorial Theory, Series B, 99, 4, (2009)
[5]  
Kohayakawa Y., Simonovits M., Skokan J., The 3-colored Ramsey number of odd cycles, Electronic Notes in Discrete Mathematics, 19, (2005)
[6]  
Dzido T., Multicolor ramsey numbers for paths and cycles, Discussiones Mathematicae Graph Theory, 25, 1-2, (2005)
[7]  
Dzido T., Kubale M., Piwakowski K., On some ramsey and turán-type numbers for paths and cycles, The Electronic Journal of Combinatorics, 13, (2006)
[8]  
Shao Z., Xu X., Shi X., Et al., Some three-color Ramsey numbers, R (P<sub>4</sub>, P<sub>5</sub>, C<sub>k</sub>) and R (P<sub>4</sub>, P<sub>6</sub>, C<sub>k</sub>), European Journal of Combinatorics, 30, 2, (2009)
[9]  
Dzido T., Fidytek R., On some three color ramsey numbers for paths and cycles, Discrete Mathematics, 309, 15, (2009)
[10]  
Brandt S., A sufficient condition for all short cycles, Discrete Applied Mathematics, 79, 1-3, (1997)