Multiscale hierarchical heterostructure yields combined high strength and excellent ductility in a Co-Cr-Fe-Ni-Al negative enthalpy alloy

被引:1
作者
An, Zibing [1 ,2 ]
Mao, Shengcheng [1 ]
Vayyala, Ashok [3 ,4 ]
Yang, Luyan [1 ,3 ]
Jiang, Cheng [1 ]
Shi, Caijuan [5 ]
Liu, Yi [6 ]
Zhou, Hao [6 ]
Liao, Xiaozhou [7 ]
Zhang, Ze [1 ,8 ]
Han, Xiaodong [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Microstruct & Property Adv Mat, Beijing 100124, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[4] Rhein Westfal TH Aachen, Cent Facil Electron Microscopy GFE, Ahornstr 55, D-52074 Aachen, Germany
[5] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[6] Nanjing Univ Sci & Technol, Nano & Heterogeneous Struct Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[7] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW, Australia
[8] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310058, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 澳大利亚研究理事会;
关键词
Negative enthalpy alloy; Multiscale hierarchical heterostructure; Strength and ductility; Dislocation; Strain hardening; HIGH-ENTROPY ALLOY; SHORT-RANGE ORDER; MECHANICAL-PROPERTIES; DEFORMATION MECHANISMS; LATTICE MISFIT; STACKING-FAULT; PHASE; MICROSTRUCTURE; EVOLUTION; SYNERGY;
D O I
10.1016/j.actamat.2024.120366
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing high-performance metallic materials with high yield strength and excellent ductility is important for various applications, such as automobiles, power plants, and aerospace industries. However, conventional alloys typically exhibit a trade-off between strength and ductility, making it difficult to develop materials that are both strong and ductile. In this study, we report that a cast Co-Cr-Fe-Ni-Al alloy can achieve a high room temperature yield strength of up to 500 MPa, which is twice that of conventional high-entropy alloys (HEAs) with face- centered cubic structures, with a tensile strain of 29 %. After thermomechanical treatment, the alloy exhibits even better synergy of strength and ductility, with a yield strength of 900 MPa and 30 % elongation. These exceptional mechanical properties are conferred by a multiscale hierarchical heterostructure, which was introduced through careful control of the alloy composition using a negative enthalpy alloy design strategy. The heterostructure ranges from the micrometer to sub-micrometer and nanometer scales. This multiscale hierarchical structure acts as a continuous impediment to dislocation motion, greatly increasing strength, and facilitating hetero-deformation induced hardening via strain partitioning, resulting in sustained ultrahigh strain hardening. Importantly, multiscale hierarchical heterostructures facilitate coordinated plastic deformation and multiple plastic deformation mechanisms, and stress concentration relieving, and play important roles in improving ductility. This work reveals the effect of different types (and scales) of heterogeneities on the deformation mechanism of HEAs and opens new perspectives for constructing heterostructures, which serve as a new design approach for high strength and excellent ductility by using a negative enthalpy alloy design strategy.
引用
收藏
页数:14
相关论文
共 84 条
  • [21] Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy
    Gao, Xuzhou
    Lu, Yiping
    Zhang, Bo
    Liang, Ningning
    Wu, Guanzhong
    Sha, Gang
    Liu, Jizi
    Zhao, Yonghao
    [J]. ACTA MATERIALIA, 2017, 141 : 59 - 66
  • [22] High-entropy alloys
    George, Easo P.
    Raabe, Dierk
    Ritchie, Robert O.
    [J]. NATURE REVIEWS MATERIALS, 2019, 4 (08) : 515 - 534
  • [23] Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
    Gludovatz, Bernd
    Hohenwarter, Anton
    Thurston, Keli V. S.
    Bei, Hongbin
    Wu, Zhenggang
    George, Easo P.
    Ritchie, Robert O.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [24] A fracture-resistant high-entropy alloy for cryogenic applications
    Gludovatz, Bernd
    Hohenwarter, Anton
    Catoor, Dhiraj
    Chang, Edwin H.
    George, Easo P.
    Ritchie, Robert O.
    [J]. SCIENCE, 2014, 345 (6201) : 1153 - 1158
  • [25] Designing eutectic high entropy alloys of CoCrFeNiNbX
    He, Feng
    Wang, Zhijun
    Cheng, Peng
    Wang, Qiang
    Li, Junjie
    Dang, Yingying
    Wang, Jincheng
    Liu, C. T.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 : 284 - 289
  • [26] A precipitation-hardened high-entropy alloy with outstanding tensile properties
    He, J. Y.
    Wang, H.
    Huang, H. L.
    Xu, X. D.
    Chen, M. W.
    Wu, Y.
    Liu, X. J.
    Nieh, T. G.
    An, K.
    Lu, Z. P.
    [J]. ACTA MATERIALIA, 2016, 102 : 187 - 196
  • [27] Enhancing mechanical properties of Al0.25CoCrFeNi high-entropy alloy via cold rolling and subsequent annealing
    He, Yixuan
    Yang, Haoxue
    Zhao, Chendong
    Zhang, Yu
    Pan, Xiangyu
    Li, Jinshan
    Wang, Jun
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 830
  • [28] Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys
    Huo, Wenyi
    Zhou, Hui
    Fang, Feng
    Xie, Zonghan
    Jiang, Jianqing
    [J]. MATERIALS & DESIGN, 2017, 134 : 226 - 233
  • [29] Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties
    Jia, Z. Y.
    Zhang, S. Z.
    Huo, J. T.
    Zhang, C. J.
    Zheng, L. W.
    Kong, F. T.
    Li, H.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 834
  • [30] Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation
    Jiang, Suihe
    Wang, Hui
    Wu, Yuan
    Liu, Xiongjun
    Chen, Honghong
    Yao, Mengji
    Gault, Baptiste
    Ponge, Dirk
    Raabe, Dierk
    Hirata, Akihiko
    Chen, Mingwei
    Wang, Yandong
    Lu, Zhaoping
    [J]. NATURE, 2017, 544 (7651) : 460 - +