Water purification by polymer nanocomposites: an overview

被引:160
作者
Pandey N. [1 ,2 ]
Shukla S.K. [2 ]
Singh N.B. [1 ]
机构
[1] Research and Technology Development Centre, Sharda University, Greater Noida
[2] Department of Polymer Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi
关键词
Adsorption models; Kinetic models; Polymer nanocomposite; Water purification;
D O I
10.1080/20550324.2017.1329983
中图分类号
学科分类号
摘要
In recent years, polymer nanocomposites (PNCs) have attracted the attention of scientists and technologists in water purification due to improved processability, surface area, stability, tunable properties, and cost effectiveness. PNCs showed fast decontamination ability with high selectivity to remove various pollutants. This review provides up-to-date information about the importance of PNCs in the removal of metal ions, dyes, and microorganism from polluted water. The general methodology for preparation and properties of nanocomposites with reference to PNCs is given. Different adsorption isotherm and kinetic models along with thermodynamic parameters for adsorption have been discussed. © 2017, © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:47 / 66
页数:19
相关论文
共 169 条
[11]  
Lofrano G., Carotenuto M., Libralato G., Domingos R.F., Markus A., Dini L., Gautam R.K., Baldantoni D., Rossi M., Sharma S.K., Chattopadhyaya M.C., Giugni M., Meric S., Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview, Water Res., 92, pp. 22-37, (2016)
[12]  
Fu Z., He C., Li H., Yan C., Chen L., Huang J., Liu Y.-N., A novel hydrophilic hydrophobic magnetic interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solution, Chem. Eng. J., 279, pp. 250-257, (2015)
[13]  
Surudzic R., Jankovic A., Bibic N., Vukasinovic-Sekulic M., Peric-Grujic A., Miskovic- Stankovic V., Park S.J., Rhee K.Y., Physico–chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method, Compos. Part B, 85, pp. 102-112, (2016)
[14]  
Sun F., Lin M., Dong Z., Zhang J., Wang C., Wang S., Song F., Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids, Colloid Interface Sci., 458, pp. 45-52, (2015)
[15]  
Shawky H.A., Chae S.-R., Lin S., Wiesner M.R., Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272, pp. 46-50, (2011)
[16]  
Rahmat M., Hubert P., Carbon nanotube–polymer interactions in nanocomposites: A review, Compos. Sci. Technol., 72, 1, pp. 72-84, (2011)
[17]  
Arash B., Park H.S., Rabczuk T., Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model, Compos. Part B, 80, pp. 92-100, (2015)
[18]  
Hussain F., Hojjati M., Okamoto M., Gorga R.E., Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview, J. Compos. Mater., 40, pp. 1511-1575, (2006)
[19]  
Shukla S.K., Shukla S.K., Govender P.P., Agorku E.S., A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix, Microchem. Acta, 183, 2, pp. 573-580, (2016)
[20]  
Dong H., Sliozberg Y.R., Snyder J.F., Steele J., Chantawansri T.L., Orlicki J.A., Walck S.D., Reiner R.S., Rudie A.W., Highly Transparent and Toughened Poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils, ACS Appl. Mater. Interfaces, 7, 45, pp. 25464-25472, (2015)