Proposal for a plasmonic mach-zehnder modulator utilizing quantum interference effect

被引:2
作者
Morimoto, Masahito [1 ]
机构
[1] Fitel Photonics Laboratory, Furukawa Electric Co. Ltd
来源
Morimoto, M. (morimoto@ch.furukawa.co.jp) | 1600年 / Institute of Electrical and Electronics Engineers Inc., United States卷 / 19期
关键词
Aharonov-Bohm effect; coherent electron wave; Mach-Zehnder modulator; plasmon; quantum interference effect;
D O I
10.1109/JSTQE.2013.2282255
中图分类号
学科分类号
摘要
In this paper, we propose a novel plasmonic Mach-Zehnder modulator utilizing the quantum interference effect. The modulator controls the oscillations in the electron density along two arms of the Mach-Zehnder interference circuit consisting of metal-dielectric interfaces. The quantum interference effect produces the interference between the electron density oscillations; i.e., magnetic fluxes (vector potentials) or electric voltages (scalar potentials) in the domain bounded by the two arms produce the interference between the two electron waves in the arms of the Mach-Zehnder interferometer. Current flows in or voltages applied to electric wires arranged parallel to the arms regulate the magnetic fluxes or electric voltages. A very small device, on the order of micrometer, low power consumption and ultrafast operation are expected to be a result of the extreme sensitivity of the quantum interference effects to the electromagnetic field. However, successful operation of the proposed modulator requires a coherent plasmon wave, which is extremely difficult to achieve and cannot be achieved in any currently available material. We look forward to the development of such a material. © 2013 IEEE.
引用
收藏
相关论文
共 33 条
[1]  
Borkar S., Design perspectives on 22 nm CMOS and beyond, Proc. 46th ACM IEEE Des. Automat. Conf., pp. 93-94, (2009)
[2]  
Ambati M.M., Genov D.A., Oulton R.F., Zhang X., Active plasmonics: Surface plasmon interaction with optical emitters, IEEE J. Sel. Topics Quantum Electron, 14, 6, pp. 1395-1403, (2008)
[3]  
Nikolajsen T., Leosson K., Bozhevolnyia S.I., Surface plasmon polariton based modulators and switches operating at telecom wavelengths, Appl. Phys. Lett., 85, 24, pp. 5833-5855, (2004)
[4]  
Tsilipakos O., Kriezis E.E., Bozhevolnyi S.I., Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides, J. Appl. Phys., 109, pp. 0731111-0731119, (2011)
[5]  
Holmgaard T., Chen Z., Bozhevolnyi S.I., Markey L., Dereux A., Dielectric-loaded plasmonic waveguide-ring resonators, Opt. Exp., 17, 4, pp. 2968-2975, (2009)
[6]  
Fujikata J., Et al., Waveguide-integrated Si nano-photodiode with surfaceplasmon antenna and its application to on-chip optical clock signal distribution, Proc. IEEE5th Int. Conf. Group IV Photonics, pp. 176-178, (2008)
[7]  
Bohm D., Pines D., A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas, Phys. Rev., 92, 3, pp. 609-625, (1953)
[8]  
Sinsky J.H., RZ-DPSK transmission using a 42.7-Gb/s integrated balanced optical front endwith record sensitivity, J. Lightw. Technol., 22, 1, pp. 180-185, (2004)
[9]  
Xu C., Liu X., Mollenauer L.F., Wei X., Comparison of returnto-zero differential phase-shift keying and ON-OFF keying in long-haul dispersion managed transmission, IEEE Photon. Technol. Lett., 15, 4, pp. 617-619, (2003)
[10]  
Dong P., Liao S., Feng D., Liang H., Zheng D., Shafiiha R., Kung C.C., Qian W., Li G., Zheng X., Krishnamoorthy A.V., Asghari M., Low VPP, ultralow-energy, compact, high-speed silicon electro-optic modulator, Opt. Exp., 17, 25, pp. 22484-22490, (2009)