Sustainable biomass-derived carbon aerogels for energy storage applications

被引:1
|
作者
Li, Mengyang [1 ]
Pang, Boyi [2 ]
Dai, Suwei [3 ]
Cui, Yan [1 ]
Wu, Yunyi [4 ]
Li, Huanxin [2 ,5 ]
Luo, Bingcheng [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[3] China Univ Geosci Beijing, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Sch Mat Sci & Technol,Natl Lab Mineral Mat, Engn Res Ctr,Minist Educ Geol Carbon Storage & Low, Beijing 100083, Peoples R China
[4] CTG Sci & Technol Res Inst, Res Ctr Comprehens Energy Technol, Beijing 100038, Peoples R China
[5] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
关键词
Biomass carbon aerogels; Energy storage; Batteries; Supercapacitors; Electrocatalysis; OXYGEN REDUCTION; NANOFIBER AEROGEL; SUPERCAPACITOR ELECTRODES; SURFACE-AREA; NITROGEN; COMPOSITE; CHITOSAN; ELECTROCATALYST; FABRICATION; ULTRALIGHT;
D O I
10.1016/j.cej.2024.156693
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon aerogels are widely used in supercapacitors, secondary batteries, electrocatalysis and even sensors, due to their low density, high porosity, large specific surface area, mechanical stability, and high conductivity. Nevertheless, the precursors of inorganic carbon aerogels are derived from non-renewable sources, posing challenges such as costly and intricate preparation methods with limited yields. In contrast, biomass presents favorable attributes, being abundant in natural resources, renewable, environmentally friendly, and costeffective. Consequently, the development of biomass-based carbon aerogels with controllable microstructure/ surface functionalization, renewable precursors, environmentally friendly, low cost, high specific surface area, electrical conductivity, and good chemical stability holds promising prospects in the field of energy storage. Over the past five years, numerous studies have focused on converting various waste biomasses into valuable carbon aerogels with applications across diverse research areas. This review summarizes recent advances in biomassbased functional carbon aerogels for energy storage, providing insights into their emerging applications in various fields. The review comprehensively covers recent progress in energy-oriented applications, such as supercapacitors, hybrid capacitors, metal-ion batteries, and fuel cells, highlighting the significant strides made in these areas. Finally, the paper discusses and outlines the main challenges and opportunities that biomass-based functionalized carbon aerogels still face in the future.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Biomass-Derived Materials for Electrochemical Energy Storage and Conversion: Overview and Perspectives
    Yu, Fang
    Li, Shizhen
    Chen, Wanru
    Wu, Tao
    Peng, Chuang
    ENERGY & ENVIRONMENTAL MATERIALS, 2019, 2 (01) : 55 - 67
  • [42] Influence of Biomass-derived Porous Activated Carbon on Polyaniline as Electrode Material for Supercapacitor Applications
    Vinayagam, Murugan
    Babu, Rajendran Suresh
    Sivasamy, Arumugam
    de Barros, Ana Lucia Ferreira
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (04) : 879 - 892
  • [43] Effect of Self-Doped Heteroatoms in Biomass-Derived Activated Carbon for Supercapacitor Applications
    Chen, Dandan
    Yang, Lijun
    Li, Jiangfeng
    Wu, Qingsheng
    CHEMISTRYSELECT, 2019, 4 (05): : 1586 - 1595
  • [44] The rational design of biomass-derived carbon materials towards next-generation energy storage: A review
    Zhu, Zongyuan
    Xu, Zhen
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 134
  • [45] Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage
    Yang, Dehong
    Xu, Peng
    Tian, Chaofan
    Li, Sen
    Xing, Tao
    Li, Zhi
    Wang, Xuebin
    Dai, Pengcheng
    MOLECULES, 2023, 28 (17):
  • [46] Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors
    Sun, Li
    Gong, Youning
    Li, Delong
    Pan, Chunxu
    GREEN CHEMISTRY, 2022, 24 (10) : 3864 - 3894
  • [47] In Situ Mineralization of Biomass-Derived Hydrogels Boosts Capacitive Electrochemical Energy Storage in Free-Standing 3D Carbon Aerogels
    Achazhiyath Edathil, Anjali
    Rezaei, Babak
    Almdal, Kristoffer
    Keller, Stephan Sylvest
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
  • [48] Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels
    Choi, Yong-Ki
    Park, Soo-Jin
    CARBON LETTERS, 2015, 16 (02) : 127 - 131
  • [49] Biomass-derived materials for energy storage and electrocatalysis: recent advances and future perspectives
    Nguyen, Van-Toan
    Cho, Kanghee
    Choi, Yujin
    Hwang, Byungwook
    Park, Young-Kwon
    Nam, Hyungseok
    Lee, Doyeon
    BIOCHAR, 2024, 6 (01)
  • [50] Coal-derived carbon nanomaterials for sustainable energy storage applications
    Li, Ke-ke
    Liu, Guo-yang
    Zheng, Li-si
    Jia, Jia
    Zhu, You-yu
    Zhang, Ya-ting
    NEW CARBON MATERIALS, 2021, 36 (01) : 133 - 149