Sustainable biomass-derived carbon aerogels for energy storage applications

被引:1
|
作者
Li, Mengyang [1 ]
Pang, Boyi [2 ]
Dai, Suwei [3 ]
Cui, Yan [1 ]
Wu, Yunyi [4 ]
Li, Huanxin [2 ,5 ]
Luo, Bingcheng [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[2] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
[3] China Univ Geosci Beijing, Beijing Key Lab Mat Utilizat Nonmet Minerals & Sol, Sch Mat Sci & Technol,Natl Lab Mineral Mat, Engn Res Ctr,Minist Educ Geol Carbon Storage & Low, Beijing 100083, Peoples R China
[4] CTG Sci & Technol Res Inst, Res Ctr Comprehens Energy Technol, Beijing 100038, Peoples R China
[5] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, South Parks Rd, Oxford OX1 3QZ, England
关键词
Biomass carbon aerogels; Energy storage; Batteries; Supercapacitors; Electrocatalysis; OXYGEN REDUCTION; NANOFIBER AEROGEL; SUPERCAPACITOR ELECTRODES; SURFACE-AREA; NITROGEN; COMPOSITE; CHITOSAN; ELECTROCATALYST; FABRICATION; ULTRALIGHT;
D O I
10.1016/j.cej.2024.156693
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon aerogels are widely used in supercapacitors, secondary batteries, electrocatalysis and even sensors, due to their low density, high porosity, large specific surface area, mechanical stability, and high conductivity. Nevertheless, the precursors of inorganic carbon aerogels are derived from non-renewable sources, posing challenges such as costly and intricate preparation methods with limited yields. In contrast, biomass presents favorable attributes, being abundant in natural resources, renewable, environmentally friendly, and costeffective. Consequently, the development of biomass-based carbon aerogels with controllable microstructure/ surface functionalization, renewable precursors, environmentally friendly, low cost, high specific surface area, electrical conductivity, and good chemical stability holds promising prospects in the field of energy storage. Over the past five years, numerous studies have focused on converting various waste biomasses into valuable carbon aerogels with applications across diverse research areas. This review summarizes recent advances in biomassbased functional carbon aerogels for energy storage, providing insights into their emerging applications in various fields. The review comprehensively covers recent progress in energy-oriented applications, such as supercapacitors, hybrid capacitors, metal-ion batteries, and fuel cells, highlighting the significant strides made in these areas. Finally, the paper discusses and outlines the main challenges and opportunities that biomass-based functionalized carbon aerogels still face in the future.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage
    Li, Ruizi
    Zhou, Yanping
    Li, Wenbin
    Zhu, Jixin
    Huang, Wei
    RESEARCH, 2020, 2020
  • [22] Biomass-derived carbon electrodes from sugarcane bagasse for supercapacitor applications
    Gautam, Kajal
    Bhatt, Mohit
    Verma, Akarsh
    Sinha, Anil Kumar
    BIOMASS CONVERSION AND BIOREFINERY, 2025,
  • [23] Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future
    Shetty, Apoorva
    Molahalli, Vandana
    Sharma, Aman
    Hegde, Gurumurthy
    CATALYSTS, 2023, 13 (01)
  • [24] Biomass-derived two-dimensional carbon materials: Synthetic strategies and electrochemical energy storage applications
    Dong, Wei-Xu
    Qu, Yi-Fan
    Liu, Xin
    Chen, Li-Feng
    FLATCHEM, 2023, 37
  • [25] Biomass-derived nitrogen-doped carbon on LiFePO4 material for energy storage applications
    Sim, Gyu Sang
    Nanthagopal, Murugan
    Santhoshkumar, P.
    Park, Jae Woo
    Ho, Chang Won
    Shaji, Nitheesha
    Kim, Hong Ki
    Lee, Chang Woo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 902
  • [26] Biomass-derived carbon as a potential sustainable material for supercapacitor-based energy storage: Design, construction and application
    Qiu, Bingbing
    Hu, Wei
    Zhang, Donghui
    Wang, Yanfang
    Chu, Huaqiang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 181
  • [27] Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects
    Zhang, Minna
    Xuan, Xiaoxu
    Yi, Xibin
    Sun, Jinqiang
    Wang, Mengjie
    Nie, Yihao
    Zhang, Jing
    Sun, Xun
    NANOMATERIALS, 2022, 12 (15)
  • [28] Recent Advances in Biomass-Derived Carbon Materials for Sodium-Ion Energy Storage Devices
    Yan, Mengdan
    Qin, Yuchen
    Wang, Lixia
    Song, Meirong
    Han, Dandan
    Jin, Qiu
    Zhao, Shiju
    Zhao, Miaomiao
    Li, Zhou
    Wang, Xinyang
    Meng, Lei
    Wang, Xiaopeng
    NANOMATERIALS, 2022, 12 (06)
  • [29] Research progress on biomass-derived carbon electrode materials for electrochemical energy storage and conversion technologies
    Escobar, B.
    Martinez-Casillas, D. C.
    Perez-Salcedo, K. Y.
    Rosas, D.
    Morales, L.
    Liao, S. J.
    Huang, L. L.
    Shi, Xuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (51) : 26053 - 26073
  • [30] Biomass-derived carbon nanomaterials for sensor applications
    Malode, Shweta J.
    Shanbhag, Mahesh M.
    Kumari, Rohini
    Dkhar, Daphika S.
    Chandra, Pranjal
    Shetti, Nagaraj P.
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2023, 222