Interlayer engineering of V2O5•nH2O by conductive Ni-BTA enabling high-performance aqueous ammonium ion batteries

被引:0
|
作者
Zhang, Zilong [1 ]
Zhang, Yifu [2 ]
Gao, Zhanming [1 ]
Lv, Tianming [1 ]
Liu, Yanyan [1 ]
Hu, Tao [1 ]
Meng, Changgong [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Chem, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Hubei Univ Sci & Technol, Sch Nucl Technol & Chem & Biol, Hubei Key Lab Radiat Chem & Funct Mat, Xianning 437100, Peoples R China
[3] Dalian Univ, Coll Environm & Chem Engn, Dalian 116622, Peoples R China
关键词
Vanadium pentoxide hydration; 1D c-MOF; Interpolation; Hydrogen bonding; Aqueous ammonium ion batteries;
D O I
10.1016/j.est.2024.114246
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous ammonium ion batteries (AAIBs) are of interest due to the low molar mass, small hydration radius, abundant raw materials and high safety of the carrier ammonium-ion. Nevertheless, there are numerous constraints associated with electrode materials that are suitable for ammonium-ion storage. In this study, we design and synthesize a composite comprising of one-dimensional conductive metal-organic skeleton material (1D cMOF) embedded between layers of hydrated vanadium pentoxide (VOH) with improved ammonium-ion storage. The central ion of the 1D c-MOF is selected to be the nickel ion, while the ligand is 1,2,4,5-benzenetetramine (BTA). The incorporation of Ni-BTA between the vanadium oxide layers results in the formation of a composite (Ni-BTA/VOH) exhibiting enhanced structural stability, augmented layer spacing and elevated conductivity. Furthermore, the dual energy storage mechanisms of VOH and C-N rearrangement act in concert to yield a "1+1 > 2" effect, thereby markedly enhancing the ammonium-ion storage. The specific capacity of Ni-BTA/VOH can reach 183 mAh g(-1) at 0.2 A g(- 1), and the retention rate can reach 52.5 % after 500 cycles at 2 A g(-1). This work not only proves the potential of Ni-BTA/VOH for widespread application in the field of aqueous batteries, but also provides a new method for structural engineering of VOH with boosted ammonium-ion storage properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Min Wei
    Wen Luo
    Danrui Yu
    Xiao Liang
    Wei Wei
    Mingrui Gao
    Shuokun Sun
    Quanyao Zhu
    Guoquan Liu
    Ionics, 2021, 27 : 4801 - 4809
  • [2] Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Wei, Min
    Luo, Wen
    Yu, Danrui
    Liang, Xiao
    Wei, Wei
    Gao, Mingrui
    Sun, Shuokun
    Zhu, Quanyao
    Liu, Guoquan
    IONICS, 2021, 27 (11) : 4801 - 4809
  • [3] Bilayered Nanostructured V2O5•nH2O for Metal Batteries
    Moretti, Arianna
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2016, 6 (23)
  • [4] Synthesis and Electrochemical Performance of the Orthorhombic V2O5•nH2O Nanorods as Cathodes for Aqueous Zinc Batteries
    Tan, Xiaoping
    Guo, Gaoli
    Wang, Kaidi
    Zhang, Huang
    NANOMATERIALS, 2022, 12 (15)
  • [5] Layered MgxV2O5•nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries
    Ming, Fangwang
    Liang, Hanfeng
    Lei, Yongjiu
    Kandambeth, Sharath
    Eddaoudi, Mohamed
    Alshareef, Husam N.
    ACS ENERGY LETTERS, 2018, 3 (10): : 2602 - 2609
  • [6] Effect of heat treatment on the electrochemical performance of V2O5•nH2O as a cathode material for aqueous rechargeable zinc ion batteries
    Li, Jiaqi
    Li, Yanwei
    Yao, Jinhuan
    Huang, Bin
    Jiang, Jiqiong
    Yang, Jianwen
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 554 - 560
  • [7] Preparation of Na plus preintercalated V2O5•nH2O nanobelts with abundant oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries
    Li, Jiaqi
    Li, Yanwei
    Xu, Wenhan
    Huang, Qize
    Liu, Botian
    Yao, Jinhuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [8] Structure of V2O5•nH2O Xerogels
    Kristoffersen, Henrik H.
    Metiu, Horia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (07): : 3986 - 3992
  • [9] Hybridizing δ-type NaxV2O5•nH2O with graphene towards high-performance aqueous zinc-ion batteries
    Zhou, Weijun
    Chen, Jizhang
    He, Cuilan
    Chen, Minfeng
    Xu, Xinwu
    Tian, Qinghua
    Xu, Junling
    Wong, Ching-Ping
    ELECTROCHIMICA ACTA, 2019, 321
  • [10] Preparation and sodium storage performance of V2O5•nH2O/graphene composites
    Yao, Jinhuan
    Sun, Tao
    Ji, Jingcheng
    Sun, Yinlu
    Xiao, Shunhua
    Li, Yanwei
    IONICS, 2019, 25 (12) : 5869 - 5879