Time-domain training signals comparison for computational fluid dynamics based aerodynamic identification

被引:0
|
作者
机构
[1] [1,O'Neill, Charles R.
[2] 1,Arena Jr., Andrew S.
来源
O'Neill, C.R. | 1600年 / American Institute of Aeronautics and Astronautics Inc.卷 / 42期
关键词
Boundary conditions - Computational fluid dynamics - Convergence of numerical methods - Finite element method - Flight dynamics - Harmonic analysis - Mathematical models - Sensitivity analysis - Time domain analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Three classes of input training signals are evaluated for computational fluid dynamics based aeroelastic prediction performance. Binary signals, frequency sweeps, and multisines are reviewed and evaluated for aeroelastic prediction performance. Aerodynamic requirements are developed for input signal design and implementation. The input training signals are evaluated with signal property analysis and aeroelastic stability predictions. Five specific input signals were tested with the AGARD 445.6 aeroelastic testcase at Mach 0.90. The signals are the binary 3211 multistep, the frequency swept chirp, the frequency swept offset dc-chirp, the frequency swept Fresnel chirp and the multisine Schroeder sweep. The offset dc-chirp gave the best performance. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [31] Computational fluid dynamics framework for aerodynamic model assessment
    Vallespin, D.
    Badcock, K. J.
    Da Ronch, A.
    White, M. D.
    Perfect, P.
    Ghoreyshi, M.
    PROGRESS IN AEROSPACE SCIENCES, 2012, 52 : 2 - 18
  • [32] Multiple time-domain diffraction for UWB signals
    Karousos, Anastasios
    Tzaras, Costas
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (05) : 1420 - 1427
  • [33] Aerodynamic Tailoring of Structures Using Computational Fluid Dynamics
    Ding, Fei
    Kareem, Ahsan
    Wan, Jiawei
    STRUCTURAL ENGINEERING INTERNATIONAL, 2019, 29 (01) : 26 - 39
  • [34] Computational Brillouin Optical Time-Domain Reflectometry
    Guo, Xinyue
    Zhou, Da-Peng
    Peng, Wei
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [35] Computational methods in ultrafast time-domain optics
    Oughstun, KE
    COMPUTING IN SCIENCE & ENGINEERING, 2003, 5 (06) : 22 - 32
  • [36] A Spectral Time-Domain Method for Computational Electrodynamics
    Lambers, James V.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1192 - 1195
  • [37] A Spectral Time-Domain Method for Computational Electrodynamics
    Lambers, James V.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (06) : 781 - 798
  • [38] COMPUTATIONAL METHOD FOR MINIMAX OPTIMIZATION IN THE TIME-DOMAIN
    OHTSUKA, T
    FUJII, HA
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1994, 17 (03) : 473 - 479
  • [39] Computational Brillouin Optical Time-Domain Reflectometry
    Shu, Dayong
    Guo, Xinyue
    Lv, Tuo
    Zhou, Da-Peng
    Peng, Wei
    Chen, Liang
    Bao, Xiaoyi
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (09) : 3467 - 3473
  • [40] Computational modeling of uncertainty in time-domain electromagnetics
    Chauviere, C.
    Hesthaven, J. S.
    Lurati, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02): : 751 - 775