User-guided program reasoning using Bayesian inference

被引:0
作者
Raghothaman M. [1 ]
Kulkarni S. [1 ]
Heo K. [1 ]
Naik M. [1 ]
机构
[1] University of Pennsylvania, United States
来源
ACM SIGPLAN Notices | 2018年 / 53卷 / 04期
基金
美国国家科学基金会;
关键词
alarm ranking; Bayesian inference; belief networks; Static analysis;
D O I
10.1145/3192366.3192417
中图分类号
学科分类号
摘要
Program analyses necessarily make approximations that often lead them to report true alarms interspersed with many false alarms. We propose a new approach to leverage user feedback to guide program analyses towards true alarms and away from false alarms. Our approach associates each alarm with a confidence value by performing Bayesian inference on a probabilistic model derived from the analysis rules. In each iteration, the user inspects the alarm with the highest confidence and labels its ground truth, and the approach recomputes the confidences of the remaining alarms given this feedback. It thereby maximizes the return on the effort by the user in inspecting each alarm. We have implemented our approach in a tool named Bingo for program analyses expressed in Datalog. Experiments with real users and two sophisticated analyses - -a static datarace analysis for Java programs and a static taint analysis for Android apps - -show significant improvements on a range of metrics, including false alarm rates and number of bugs found. © 2018 ACM.
引用
收藏
页码:722 / 735
页数:13
相关论文
共 50 条
  • [31] Bayesian Inference of Subglacial Topography Using Mass Conservation
    Brinkerhoff, Douglas J.
    Aschwanden, Andy
    Truffer, Martin
    FRONTIERS IN EARTH SCIENCE, 2016, 4
  • [32] Bayesian inference in STAR models using neighbourhood effects
    Beamonte, Asuncion
    Gargallo, Pilar
    Salvador, Manuel
    STATISTICAL MODELLING, 2008, 8 (03) : 285 - 311
  • [33] CALIBRATION OF THE STOCHASTIC MULTICLOUD MODEL USING BAYESIAN INFERENCE
    De La Chevrotiere, Michele
    Khouider, Boualem
    Majda, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03) : B538 - B560
  • [34] Bayesian inference for parameters estimation using experimental data
    Pepi, Chiara
    Gioffre, Massimiliano
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [35] Bayesian Inference of Species Trees using Diffusion Models
    Stoltz, Marnus
    Baeumer, Boris
    Bouckaert, Remco
    Fox, Colin
    Hiscott, Gordon
    Bryant, David
    SYSTEMATIC BIOLOGY, 2021, 70 (01) : 145 - 161
  • [36] SALIENT OBJECT DETECTION USING OCTONION WITH BAYESIAN INFERENCE
    Gao, Hong-Yun
    Lam, Kin-Man
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3292 - 3296
  • [37] Multivariate Pattern Recognition in MSPC Using Bayesian Inference
    Ruiz-Tamayo, Jose
    Vazquez-Lopez, Jose Antonio
    Ruelas-Santoyo, Edgar Augusto
    Hernandez-Lopez, Aidee
    Lopez-Juarez, Ismael
    Rios-Lira, Armando Javier
    MATHEMATICS, 2021, 9 (04) : 1 - 18
  • [38] Bayesian inference with missing data using bound and collapse
    Sebastiani, P
    Ramoni, M
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (04) : 779 - 800
  • [39] Bayesian inference using WBDev: A tutorial for social scientists
    Ruud Wetzels
    Michael D. Lee
    Eric-Jan Wagenmakers
    Behavior Research Methods, 2010, 42 : 884 - 897
  • [40] Encoding Probabilistic Brain Atlases Using Bayesian Inference
    Van Leemput, Koen
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (06) : 822 - 837