共 13 条
- [1] GAO Q H,, QIE D F., The development of heat flux measurement technology[J], Spacecraft Environment Engineering, 37, 3, pp. 218-227, (2020)
- [2] ZHOU K B,, LIU N A,, ZHANG L H,, Et al., Thermal radiation from fire whirls: revised solid flame model[J], Fire Technology, 50, 6, pp. 1573-1587, (2014)
- [3] GIFFORD A R,, HUBBLE D O,, PULLINS C A,, Et al., Durable heat flux sensor for extreme temperature and heat flux environments[J], Journal of Thermophysics and Heat Transfer, 24, 1, pp. 69-76, (2010)
- [4] YE X,, YI X L,, LIN C,, Et al., Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J], Remote Sensing, 12, 17, (2020)
- [5] THUILLIER G,, ZHU P,, SNOW M,, Et al., Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J], Light: Science & Applications, 11, (2022)
- [6] YAN Z J,, SHEN D,, WU Y S,, Et al., Research on the base heating environment of a multi-nozzle heavy launch vehicle[J], Missiles and Space Vehicles, 1, pp. 105-109, (2021)
- [7] YI X L,, YANG Z L,, YE X,, Et al., Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J], Opt. Precision Eng, 23, 10, pp. 2733-2739, (2015)
- [8] YI X L,, FANG W,, LIN Y D,, Et al., Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J], Opt. Precision Eng, 29, 1, pp. 10-20, (2021)
- [9] WU D,, WANG K,, YE X,, Et al., Space cryogenic absolute radiometer[J], Chinese Journal of Luminescence, 40, 8, pp. 1015-1021, (2019)
- [10] GAO X,, WANG K,, FANG W., Optimization on the structure of the absorption cavity of solar irradiance absolute radiometer[J], Opt. Precision Eng, 26, 3, pp. 624-631, (2018)