Epileptic seizure prediction method based on empirical mode decomposition and Kolmogorov complexity

被引:0
|
作者
Wang, Jing [1 ]
Xu, Guanghua [2 ]
Zhang, Qing [1 ]
机构
[1] School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
[2] State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
关键词
Algorithms - Data acquisition - Electroencephalography - Forecasting - Patient monitoring;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming at the deficiency of scalp electroencephalogram (EEG), a new epileptic seizure prediction method is proposed, where the empirical mode decomposition (EMD) is utilized to remove the artifacts in scalp EEG signals, and the intrinsic mode functions containing the essential information to epileptic seizure prediction is retained. Then, Kolmogorov complexity is employed to reflect the non-linear dynamic characteristics of brains, which reveals that only the Kolmogorov complexity of electrodes near the epileptogenic area decreases significantly before seizures. The algorithm is validated by the clinical data collected from 3 epilepsy patients. The results show that the average prediction period gets 338 seconds, the mean sensitivity reaches to 66.7% and the specificity 19.2%.
引用
收藏
页码:1364 / 1367
相关论文
共 50 条
  • [1] Empirical Mode Decomposition In Epileptic Seizure Prediction
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 275 - 280
  • [2] Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition
    Zheng, Yang
    Wang, Gang
    Li, Kuo
    Bao, Gang
    Wang, Jue
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (06) : 1104 - 1111
  • [3] Epileptic Seizure Prediction by Using Empirical Mode Decomposition and Complexity Analysis of Single-channel Scalp Electroencephalogram
    Zhu, Tianqiao
    Huang, Liyu
    Tian, Xuzi
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 606 - +
  • [4] Epileptic Seizure Detection Using Empirical Mode Decomposition
    Tafreshi, Azadeh Kamali
    Nasrabadi, Ali M.
    Omidvarnia, Amir H.
    ISSPIT: 8TH IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2008, : 238 - 242
  • [5] An epileptic seizure prediction algorithm from scalp EEG based on morphological filter and kolmogorov complexity
    Xu, Guanghua
    Wang, Jing
    Zhang, Qing
    Zhu, Junming
    DIGITAL HUMAN MODELING, 2007, 4561 : 736 - 746
  • [6] Epileptic Seizure Classification with Multivariate Empirical Mode Decomposition and Hilbert Vibration Decomposition
    Buyukcakir, Barkin
    Mutlu, Ali Yener
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [7] Automatic Epileptic Seizure Detection based on Empirical Mode Decomposition and Deep Neural Network
    Daoud, Hisham G.
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018), 2018, : 182 - 186
  • [8] Epileptic seizure classifications using empirical mode decomposition and its derivative
    Cura, Ozlem Karabiber
    Atli, Sibel Kocaaslan
    Ture, Hatice Sabiha
    Akan, Aydin
    BIOMEDICAL ENGINEERING ONLINE, 2020, 19 (01)
  • [9] Epileptic seizure classifications using empirical mode decomposition and its derivative
    Ozlem Karabiber Cura
    Sibel Kocaaslan Atli
    Hatice Sabiha Türe
    Aydin Akan
    BioMedical Engineering OnLine, 19
  • [10] EEG Seizure Prediction Based on Empirical Mode Decomposition and Convolutional Neural Network
    Yan, Jianzhuo
    Li, Jinnan
    Xu, Hongxia
    Yu, Yongchuan
    Pan, Lexin
    Cheng, Xuerui
    Tan, Shaofeng
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 463 - 473