We present a complete and consistent exposition of the regularization, renormalization, and resummation procedures in the setup of having a contraction and then non-singular bounce followed by inflation with a sharp transition from slow-roll (SR) to ultra-slow roll (USR) phase for generating primordial black holes (PBHs). We consider following an effective field theory (EFT) approach and study the quantum loop corrections to the power spectrum from each phase. We demonstrate the complete removal of quadratic UV divergences after renormalization and softened logarithmic IR divergences after resummation and illustrate the scheme-independent nature of our renormalization approach. We further show that the addition of a contracting and bouncing phase allows us to successfully generate PBHs of solar-mass order, MPBH similar to O(M circle dot)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\textrm{PBH}\sim \mathcal{O}(M_{\odot })$$\end{document}, by achieving the minimum e-folds during inflation to be Delta NTotal similar to O(60)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta N_{\textrm{Total}}\sim \mathcal{O}(60)$$\end{document} and in this process successfully evading the strict no-go theorem. We notice that varying the effective sound speed between 0.88 <= cs <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.88\leqslant c_{s}\leqslant 1$$\end{document}, allows the peak spectrum amplitude to lie within 10-3 <= A <= 10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>{-3}\leqslant A \leqslant 10<^>{-2}$$\end{document}, indicating that causality and unitarity remain protected in the theory. We analyse PBHs in the extremely small, MPBH similar to O(10-33-10-27)M circle dot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\textrm{PBH}}\sim \mathcal{O}(10<^>{-33}-10<^>{-27})M_{\odot }$$\end{document}, and the large, MPBH similar to O(10-6-10-1)M circle dot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\textrm{PBH}}\sim \mathcal{O}(10<^>{-6}-10<^>{-1})M_{\odot }$$\end{document}, mass limits and confront the PBH abundance results with the latest microlensing constraints. We also study the cosmological beta functions across all phases and find their interpretation consistent in the context of bouncing and inflationary scenarios while satisfying the pivot scale normalization requirement. Further, we estimate the spectral distortion effects and shed light on controlling PBH overproduction.
机构:
Univ Autonoma Madrid UAM, Dept Fis Teor, Campus Cantoblanco, Madrid 28049, SpainUniv Autonoma Madrid UAM, Dept Fis Teor, Campus Cantoblanco, Madrid 28049, Spain
Ballesteros, Guillermo
Egea, Jesus Gambin
论文数: 0引用数: 0
h-index: 0
机构:
UAM, CSIC, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, SpainUniv Autonoma Madrid UAM, Dept Fis Teor, Campus Cantoblanco, Madrid 28049, Spain
Egea, Jesus Gambin
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS,
2024,
(07):