Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum lam) by near infrared spectroscopy (NIRS)

被引:8
|
作者
Sandra B.Q. [1 ]
Teresa A.F. [1 ]
Fernando C.C. [1 ]
Felipe S.M.H. [1 ]
Christian L.L. [2 ]
Jean R.E. [3 ]
Virginia R. [1 ]
Oscar E.F. [1 ]
Jorge G.V. [4 ]
Víctor V.M. [5 ]
机构
[1] Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, P-Lima
[2] Reactivos para Análisis Perú SA, P-Lima
[3] Estación Experimental del Centro de Investigación IVITA-El Mantaro, Universidad Nacional Mayor de San Marcos, Huancayo
[4] Facultad de Química E Ingeniería Química, EAP Ingeniería Agroindustrial, Universidad Nacional Mayor de San Marcos, P-Lima
[5] Estación Experimental del Centro de Investigación IVITA-Maranganí, Universidad Nacional Mayor de San Marcos, Cusco
来源
| 1600年 / Universidad Nacional Mayor de San Marcos卷 / 28期
关键词
Calibration; Forage evaluation; Italian rye grass; Lolium multiflorum lam; Near infrared spectroscopy; Nirs; Proximate analysis;
D O I
10.15381/rivep.v28i3.13357
中图分类号
学科分类号
摘要
The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam).
引用
收藏
页码:538 / 548
页数:10
相关论文
共 38 条
  • [21] Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures
    Parrini, Silvia
    Acciaioli, Anna
    Franci, Oreste
    Pugliese, Carolina
    Bozzi, Riccardo
    JOURNAL OF APPLIED ANIMAL RESEARCH, 2019, 47 (01) : 514 - 520
  • [22] Prediction of chemical composition of Cynodon spp. by near infrared reflectance spectroscopy
    Fonteneli, RS
    Scheffer-Basso, SM
    Dürr, JW
    Appelt, JV
    Bortolini, F
    Haubert, FA
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2004, 33 (04): : 838 - 842
  • [23] Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy
    Ohlsson, C.
    Houmoller, L. P.
    Weisbjerg, M. R.
    Lund, P.
    Hvelplund, T.
    JOURNAL OF ANIMAL PHYSIOLOGY AND ANIMAL NUTRITION, 2007, 91 (11-12) : 498 - 507
  • [24] Use of near-infrared spectroscopy for prediction of chemical composition of Tifton 85 grass
    Serafim, Camila Cano
    Guerra, Geisi Loures
    Mizubuti, Ivone Yurika
    Boscaro de Castro, Filipe Alexandre
    Prado-Calixto, Odimari Pricila
    Galbeiro, Sandra
    Poveda Parra, Angela Rocio
    Bumbieris Junior, Valter Harry
    Nedel Pertile, Simone Fernanda
    de Almeida Rego, Fabiola Cristine
    SEMINA-CIENCIAS AGRARIAS, 2021, 42 (03): : 1287 - 1302
  • [25] Near-infrared reflectance spectroscopy (NIRS) for the mandatory labelling of compound feedingstuffs:: chemical composition and open-declaration
    Pérez-Marín, DC
    Garrido-Varo, A
    Guerrero-Ginel, JE
    Gómez-Cabrera, A
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2004, 116 (3-4) : 333 - 349
  • [26] Obtainment of calibration curves to determine the chemical composition of the species Pennisetum purpureum through Near Infrared Reflectance Spectroscopy (NIRS)
    Valenciaga, Dalky
    de Oliveira Simoes, Eloisa
    La O, O.
    Chongo, Bertha
    Oramas, A.
    Cairo, J. C.
    CUBAN JOURNAL OF AGRICULTURAL SCIENCE, 2007, 41 (02): : 157 - 160
  • [27] PREDICTION OF CHEMICAL COMPOSITION AND ENERGY VALUE OF GRASS SILAGE BY NEAR-INFRARED REFLECTANCE SPECTROSCOPY
    Znidarsic, Tomaz
    Verbic, Joze
    Babnik, Drago
    JOURNAL OF CENTRAL EUROPEAN AGRICULTURE, 2006, 7 (01): : 127 - 134
  • [28] Feasibility of Application of Near Infrared Reflectance (NIR) Spectroscopy for the Prediction of the Chemical Composition of Traditional Sausages
    Kasapidou, Eleni
    Papadopoulos, Vasileios
    Mitlianga, Paraskevi
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [29] Chemical composition of wild rabbit meat (Oryctolagus cuniculus) and viability of its prediction by near infrared spectroscopy
    Gonzalez-Redondo, P.
    Velarde Gomez, L.
    Guerrero Herrero, L.
    Fernandez-Cabanas, V. M.
    ITEA-INFORMACION TECNICA ECONOMICA AGRARIA, 2010, 106 (03): : 184 - 196
  • [30] Prediction of the chemical composition and nutritive value of lucerne (Medicago sativa L.) by Near Infrared Spectroscopy
    Colombini, S.
    Confalonieri, M.
    Borreani, G.
    Tabacco, E.
    Peiretti, P. G.
    Odoardi, M.
    ITALIAN JOURNAL OF ANIMAL SCIENCE, 2005, 4 : 141 - 143