Prediction of chemical composition and neutral detergent fibre of Italian ryegrass (Lolium multiflorum lam) by near infrared spectroscopy (NIRS)

被引:8
作者
Sandra B.Q. [1 ]
Teresa A.F. [1 ]
Fernando C.C. [1 ]
Felipe S.M.H. [1 ]
Christian L.L. [2 ]
Jean R.E. [3 ]
Virginia R. [1 ]
Oscar E.F. [1 ]
Jorge G.V. [4 ]
Víctor V.M. [5 ]
机构
[1] Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, P-Lima
[2] Reactivos para Análisis Perú SA, P-Lima
[3] Estación Experimental del Centro de Investigación IVITA-El Mantaro, Universidad Nacional Mayor de San Marcos, Huancayo
[4] Facultad de Química E Ingeniería Química, EAP Ingeniería Agroindustrial, Universidad Nacional Mayor de San Marcos, P-Lima
[5] Estación Experimental del Centro de Investigación IVITA-Maranganí, Universidad Nacional Mayor de San Marcos, Cusco
来源
Revista de Investigaciones Veterinarias del Peru | 2017年 / 28卷 / 03期
关键词
Calibration; Forage evaluation; Italian rye grass; Lolium multiflorum lam; Near infrared spectroscopy; Nirs; Proximate analysis;
D O I
10.15381/rivep.v28i3.13357
中图分类号
学科分类号
摘要
The aim of this study was to generate calibration equations to predict the nutritional chemical composition of the Italian rye grass (RG) (Lolium multiflorum Lam) by near infrared spectroscopy (NIRS). A total of 75 samples of RG of different harvesting weeks were collected from the IVITA Research Center in Huancayo (Peru). Spectrum capture was performed using NIRS and the chemical analysis was done for reference of the following components: crude protein (CP), ether extract (EE), total ash (CZ), crude fibre (CF) and neutral detergent fibre (NDF). A calibration and validation model by partial least squares (PLS) was developed and the correlation coefficient (R), coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP), ratio range with error (RER) and residual predictive deviation (RPD) were used as statistics of accuracy and precision. Proximate analysis means were: PC = 19.02%, EE = 4.53%, CZ = 12.79%, FC = 16.50% and NDF 60.98%. High values of R2 and low values of RMSEC and RMSEP were obtained for PC (0.96, 1.02, 1.19), EE (0.94, 0.29, 1.05), CZ (0.90, 0.57, 0.92) and NDF (0.90, 1.01, 1.25, respectively). The largest RER (22.34) and RPD (4.90) were obtained for EE. It is concluded that the calibration and validation equations obtained by NIRS enable optimal quantitative prediction of PC, EE, CZ and NDF in Italian rye grass (Lolium multiflorum Lam).
引用
收藏
页码:538 / 548
页数:10
相关论文
共 38 条
[11]  
Dambergs R., Cozzolino D., Cynkar W., Janik L., Gishen M., The determination of red grape quality parameters using the Local algorithm, J Near Infrared Spectrosc, 14, pp. 71-79, (2006)
[12]  
Decruyenaere V., Planchon V., Dardenne P., Stilmant D., Prediction error and repeatability of near infrared reflectance spectroscopy applied to faeces samples in order to predict voluntary intake and digestibility of forages by ruminants, Anim Feed Sci Tech, 205, pp. 49-59, (2015)
[13]  
Decruyenaere V., Lecomte P., Demarquilly C., Aufrere J., Dardenne P., Stilmant D., Buldgen A., Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration, Anim Feed Sci Tech, 148, pp. 138-156, (2009)
[14]  
Quality assurance for animal feed analysis laboratories, FAO Animal Production and Health Manual, 4, (2011)
[15]  
Flores G., Diaz N., Diaz M., Valladares J., Pereira S., Fernandez B.L., Resch C., Et al., Evaluación de métodos de laboratorio para la predicción de la digestibilidad in vivo de la materia orgánica de ensilajes de hierba y planta entera de maíz, Pastos, 43, 1, pp. 5-99, (2013)
[16]  
Garcia-Ciudad A., Garcia-Criado B., Perez-Corona M., Vazquez D.A.B., Ruano-Ramos A., Application of near-infrared reflectance spectroscopy to chemical analysis of heterogeneous and botanically complex grassland samples, J Sci Food Agric, 63, pp. 419-426, (1993)
[17]  
Givens D.I., De Boever J., Deaviee E., The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans, Nutr Res Rev, 10, pp. 83-114, (1997)
[18]  
IV Censo Nacional Agropecuario: Resultados Definitivos, (2012)
[19]  
Keim A., Charles B., Alomar A., Prediction of crude protein and neutral detergent fibre concentration in residues of in situ ruminal degradation of pasture samples by near-infrared spectroscopy (NIRS), Anim Prod Sci, 56, pp. 1504-1511, (2015)
[20]  
Krahmer A., Gudi G., Weiher N., Gierus M., Schutze W., Schulz H., Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy, Vib Spectrosc, 68, pp. 96-103, (2013)