D.C. programming for solving a class of global optimization problems via reformulation by exact penalty

被引:0
作者
An, Le Thi Hoai [1 ]
机构
[1] Laboratory of Modelling, Optimization and Operations Research, National Institute for Applied Sciences-Rouen, F 76 131 Mont Saint Aignan Cedex
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2003年 / 2861卷
关键词
Combined DCA - branch and bound algorithm; d.c; programming; DCA; Exact penalty; Polyhedral d.c. programming; Reformulations;
D O I
10.1007/978-3-540-39901-8_7
中图分类号
学科分类号
摘要
We consider a class of important problems in global optimization, namely concave minimization over a bounded polyhedral convex set with an additional reverse convex constraint. Using a related exact penalty property, we reformulate the class of mixed zero-one concave minimization programs, concave minimization programs over efficient sets, bilevel programs, and concave minimization programs with mixed linear complementarity constraints in the form of equivalent d.c. (difference of convex functions) programs. Solution methods based on d.c. optimization algorithms (DCA) and the combined DCA - branch and bound are investigated. © Springer-Verlag Berlin Heidelberg 2003.
引用
收藏
页码:87 / 101
页数:14
相关论文
共 27 条
[1]  
An L.T.H., Contribution à l'optimisation non Convexe et l'optimisation Globale: Théorie, Algorithmes et Applications, (1997)
[2]  
An L.T.H., Tao P.D., Solving a class of linearly constrained indefinite quadratic problems by D.c. algorithms, Journal of Global Optimization, 11, pp. 253-285, (1997)
[3]  
An L.T.H., Tao P.D., A continuous approach for large-scale linearly constrained quadratic zero-one programming, Optimization, 50, 1-2, pp. 93-120, (2001)
[4]  
An L.T.H., Tao P.D., Muu L.D., Numerical solution for Optimization over the efficient set by D.c. Optimization Algorithm, Operations Research Letters, 19, pp. 117-128, (1996)
[5]  
An L.T.H., Tao P.D., Muu L.D., Exact penalty in d.c. programming, Vietnam Journal of Mathematics, 27, 2, pp. 169-178, (1999)
[6]  
An L.T.H., Tao P.D., Muu L.D., Simplicially constrained d.c. Optimization for optimizing over the Efficient and weakly efficient sets, Journal of Optimization Theory and Applications, 117, 3, pp. 503-531, (2003)
[7]  
Benson H.P., Optimization over the Efficient Set, Journal of Mathematical Analysis and Applications, 98, pp. 562-580, (1984)
[8]  
Bolitineanu S., Minimization of a Quasi-concave Function over an Efficient Set, Mathematical Programming, 61, pp. 89-110, (1993)
[9]  
Hiriat Urruty J.B., Lemarechal C., Convex Analysis and Minimization Algorithms, (1993)
[10]  
Horst R., Phong T.Q., Thoai N.V., Vries J., On Solving a D.C. Programming Problem by a Sequence of Linear Programs, Journal of Global Optimization, 1, pp. 183-203, (1991)