Hydrate management strategies for CO2 injection into depleted gas reservoirs

被引:0
|
作者
Jung, Jongyeon [1 ]
Go, Woojin [1 ]
Park, Sunghyun [1 ,2 ]
Seo, Yutaek [1 ]
机构
[1] Seoul Natl Univ, Res Inst Marine Syst Engn RIMSE, Coll Engn, Dept Naval Architecture & Ocean Engn, Seoul 08826, South Korea
[2] Hyundai Engn & Construct, Seoul 03058, South Korea
关键词
CO; 2; sequestration; Hydrate phase equilibria; Molecular dynamics simulations; Hydrate inhibitors; Depleted gas reservoirs; CARBON-DIOXIDE HYDRATE; PHASE-BEHAVIOR; METHANE HYDRATE; CAPTURE; SIMULATIONS; INTERFACE; CRYSTALS; GROWTH; ICE;
D O I
10.1016/j.cej.2024.157251
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sequestering CO2 in depleted gas reservoirs using carbon capture, utilization, and storage technologies has emerged as a viable strategy for mitigating global carbon emissions. However, CO2 hydrate formation during injection processes is challenging and poses a risk to the operational integrity and efficiency of sequestration projects. This study investigated CO2 hydrate formation dynamics within silica gel environments that closely mimicked the median pore size of natural sandstone reservoirs, particularly targeting depleted gas fields in the East Sea of Korea. Integrating kinetic insights into experimental hydrate formation assessments and molecular dynamics simulations provided a comprehensive understanding of the CO2 hydrate formation mechanisms, as well as the formation dynamics and stability of the CO2 hydrates. For example, the hydrate formation kinetics were significantly reduced in the small pores, suggesting the feasibility of implementing more economical hydrate inhibitor injection strategies during CO2 injection. Moreover, this study evaluated the inhibitory effects of NaCl and methanol on CO2 hydrate stability by accurately measuring the three-phase (H-Lw-V) equilibria and employing silica gels (6 nm pore size). The presence of methanol and amorphous silica significantly impacted hydrate formation, with methanol potentially influencing the local structure around the hydrate phase and silica hindering hydrate growth through dynamic interactions with CO2 molecules. In addition, we elucidated the complex interplay between CO2, water, and methanol (hydrate inhibitor) within the constrained environments of porous media, offering strategic insights for the development of effective CO2 injection and sequestration strategies. Integrating molecular-level observations with real-world geological modeling presents a novel methodology for enhancing the safety, efficiency, and environmental sustainability of carbon capture and storage operations. The findings of this study provide critical insights into hydrate phase behavior, highlighting the importance of precise equilibrium determination under simulated reservoir conditions to effectively anticipate and mitigate hydrate formation challenges.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Storage of CO2 hydrate in shallow gas reservoirs: pre- and post-injection periods
    Zatsepina, Olga Ye
    Pooladi-Darvish, Mehran
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (03): : 223 - 236
  • [22] Numerical Modelling on CO2 Storage Capacity in Depleted Gas Reservoirs
    Akai, Takashi
    Saito, Naoki
    Hiyama, Michiharu
    Okabe, Hiroshi
    ENERGIES, 2021, 14 (13)
  • [23] Assessment of CO2 Injectivity During Sequestration in Depleted Gas Reservoirs
    Hoteit, Hussein
    Fahs, Marwan
    Soltanian, Mohamad Reza
    GEOSCIENCES, 2019, 9 (05)
  • [24] Modeling of CO2 sequestration in depleted gas reservoirs in the aspect of enhanced gas recovery
    Blicharski, Jacek
    Klimkowski, Lukasz
    PRZEMYSL CHEMICZNY, 2019, 98 (04): : 535 - 540
  • [25] Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap
    Guo, Yang
    Li, Shuxia
    Sun, Hao
    Wu, Didi
    Liu, Lu
    Zhang, Ningtao
    Qin, Xuwen
    Lu, Cheng
    ENERGY, 2024, 303
  • [26] Direct Flue Gas Injection into Ocean for Simultaneous Energy Recovery and CO2 Sequestration in Solid Hydrate Reservoirs
    Prasad, Siddhant Kumar
    Kumar, Yogendra
    Bhawangirkar, Dnyaneshwar R.
    Gaikwad, Namrata
    Sangwai, Jitendra S.
    ENERGY & FUELS, 2024, 38 (17) : 16622 - 16637
  • [27] CO2 sequestration in depleted oil reservoirs
    Bossie-Codreanu, D
    Le-Gallo, Y
    Duquerroix, JP
    Doerler, N
    Le Thiez, P
    GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 403 - 408
  • [28] Effects of salinity on hydrate stability and implications for storage of CO2 in natural gas hydrate reservoirs
    Husebo, Jarle
    Ersland, Geir
    Graue, Arne
    Kvamme, Bjorn
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 3731 - 3738
  • [29] CO2 Sequestration and Enhanced Oil Recovery at Depleted Oil/Gas Reservoirs
    Dai, Zhenxue
    Viswanathan, Hari
    Xiao, Ting
    Middleton, Richard
    Pan, Feng
    Ampomah, William
    Yang, Changbing
    Zhou, Youqin
    Jia, Wei
    Lee, Si-Yong
    Cather, Martha
    Balch, Robert
    McPherson, Brian
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6957 - 6967
  • [30] Disposal of power plant CO2 in depleted oil and gas reservoirs in Texas
    Bergman, PD
    Winter, EM
    Chen, ZY
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 : S211 - S216