Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration

被引:0
作者
Wang, Jun [1 ,2 ]
Wang, Jiajia [3 ]
Feng, Jianyong [1 ,2 ]
Hu, Yingfei [1 ]
Huang, Huiting [2 ]
Zhang, Ningsi [2 ]
Zhao, Minyue [2 ]
Liu, Wangxi [1 ,2 ]
Liu, Changhao [2 ]
Zhu, Zhi [1 ]
Yan, Shicheng [2 ]
Yu, Tao [1 ]
Zhang, Ce [4 ]
Yao, Wei [4 ]
Zou, Zhigang [1 ,2 ]
Li, Zhaosheng [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Jiangsu Key Lab Nano Technol, Nanjing 210093, Peoples R China
[3] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Peoples R China
[4] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; COBALT; SURFACES; INSIGHT; ATOMS;
D O I
10.1016/j.joule.2024.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The primary source of oxygen in space exploration is derived from water electrolysis. Herein, we discovered a mild photochemical hydrogenation process that can convert CO2 into carbon nanotubes (CNTs) and H2O by using a Co-based catalyst. Hence, astronauts can extract oxygen from CO2 metabolism to close the oxygen recycling loop (overall reaction: CO2- C + O2), allowing for '100% theoretical oxygen recovery. This photochemical technique has enabled a high turnover number (the molar ratio of C to Co) of 240 for CNT formation during a 100 h reaction in a flow reactor. The oxygen recovery efficiency reaches approximately 68% when using flowing CO2 and H2, surpassing the theoretical maximum (50%) for the Sabatier reaction combined with water electrolysis at the International Space Station. The tip-growth mode of CNTs principally allows long-term oxygen recovery from CO2, in addition to space manufacturing of CNTs.
引用
收藏
页码:3126 / 3141
页数:17
相关论文
共 59 条
  • [41] One-Pot Synthesis of Carbon Nanofibers from CO2
    Ren, Jiawen
    Li, Fang-Fang
    Lau, Jason
    Gonzalez-Urbina, Luis
    Licht, Stuart
    [J]. NANO LETTERS, 2015, 15 (09) : 6142 - 6148
  • [42] Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems
    Shoji, Shusaku
    Peng, Xiaobo
    Yamaguchi, Akira
    Watanabe, Ryo
    Fukuhara, Choji
    Cho, Yohei
    Yamamoto, Tomokazu
    Matsumura, Syo
    Yu, Min-Wen
    Ishii, Satoshi
    Fujita, Takeshi
    Abe, Hideki
    Miyauchi, Masahiro
    [J]. NATURE CATALYSIS, 2020, 3 (02) : 148 - 153
  • [43] Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis
    Smith, Rodney D. L.
    Prevot, Mathieu S.
    Fagan, Randal D.
    Zhang, Zhipan
    Sedach, Pavel A.
    Siu, Man Kit Jack
    Trudel, Simon
    Berlinguette, Curtis P.
    [J]. SCIENCE, 2013, 340 (6128) : 60 - 63
  • [44] Uniting Heat and Light in Heterogeneous CO2 Photocatalysis: Optochemical Materials and Reactor Engineering
    Sun, Junchuan
    Sun, Wei
    Wang, Lu
    Ozin, Geoffrey A.
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2022, : 1260 - 1271
  • [45] A DFT Study of Carbon in the Subsurface Layer of Cobalt Surfaces
    van Helden, Pieter
    Ciobica, Ionel M.
    [J]. CHEMPHYSCHEM, 2011, 12 (16) : 2925 - 2928
  • [46] Selective Hydrogenation of CO2 to Ethanol over Cobalt Catalysts
    Wang, Lingxiang
    Wang, Liang
    Zhang, Jian
    Liu, Xiaolong
    Wang, Hai
    Zhang, Wei
    Yang, Qi
    Ma, Jingyuan
    Dong, Xue
    Yoo, Seung Jo
    Kim, Jin-Gyu
    Meng, Xiangju
    Xiao, Feng-Shou
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (21) : 6104 - 6108
  • [47] VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code
    Wang, Vei
    Xu, Nan
    Liu, Jin-Cheng
    Tang, Gang
    Geng, Wen-Tong
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2021, 267
  • [48] Precise Identification of the Active Phase of Cobalt Catalyst for Carbon Nanotube Growth by In Situ Transmission Electron Microscopy
    Wang, Yang
    Qiu, Lu
    Zhang, Lili
    Tang, Dai-Ming
    Ma, Ruixue
    Wang, Yongzhao
    Zhang, Bingsen
    Ding, Feng
    Liu, Chang
    Cheng, Hui-Ming
    [J]. ACS NANO, 2020, 14 (12) : 16823 - 16831
  • [49] Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction
    Xiao, Zhaohui
    Huang, Yu-Cheng
    Dong, Chung-Li
    Xie, Chao
    Liu, Zhijuan
    Du, Shiqian
    Chen, Wei
    Yan, Dafeng
    Tao, Li
    Shu, Zhiwen
    Zhang, Guanhua
    Duan, Huigao
    Wang, Yanyong
    Zou, Yuqin
    Chen, Ru
    Wang, Shuangyin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) : 12087 - 12095
  • [50] CO2 fixation into carbon nanofibres using electrochemical-thermochemical tandem catalysis
    Xie, Zhenhua
    Huang, Erwei
    Garg, Samay
    Hwang, Sooyeon
    Liu, Ping
    Chen, Jingguang G.
    [J]. NATURE CATALYSIS, 2024, 7 (01) : 98 - 109