Photochemical CO2 hydrogenation to carbon nanotubes and H2O for oxygen recovery in space exploration

被引:0
作者
Wang, Jun [1 ,2 ]
Wang, Jiajia [3 ]
Feng, Jianyong [1 ,2 ]
Hu, Yingfei [1 ]
Huang, Huiting [2 ]
Zhang, Ningsi [2 ]
Zhao, Minyue [2 ]
Liu, Wangxi [1 ,2 ]
Liu, Changhao [2 ]
Zhu, Zhi [1 ]
Yan, Shicheng [2 ]
Yu, Tao [1 ]
Zhang, Ce [4 ]
Yao, Wei [4 ]
Zou, Zhigang [1 ,2 ]
Li, Zhaosheng [1 ,2 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Jiangsu Key Lab Nano Technol, Nanjing 210093, Peoples R China
[3] Hohai Univ, Coll Mech & Mat, Nanjing 210098, Peoples R China
[4] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; COBALT; SURFACES; INSIGHT; ATOMS;
D O I
10.1016/j.joule.2024.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The primary source of oxygen in space exploration is derived from water electrolysis. Herein, we discovered a mild photochemical hydrogenation process that can convert CO2 into carbon nanotubes (CNTs) and H2O by using a Co-based catalyst. Hence, astronauts can extract oxygen from CO2 metabolism to close the oxygen recycling loop (overall reaction: CO2- C + O2), allowing for '100% theoretical oxygen recovery. This photochemical technique has enabled a high turnover number (the molar ratio of C to Co) of 240 for CNT formation during a 100 h reaction in a flow reactor. The oxygen recovery efficiency reaches approximately 68% when using flowing CO2 and H2, surpassing the theoretical maximum (50%) for the Sabatier reaction combined with water electrolysis at the International Space Station. The tip-growth mode of CNTs principally allows long-term oxygen recovery from CO2, in addition to space manufacturing of CNTs.
引用
收藏
页码:3126 / 3141
页数:17
相关论文
共 59 条
  • [1] Abney M.B., 2020, ICES-2020-108
  • [2] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [3] Superdurable and fire-retardant structural coloration of carbon nanotubes
    Chen, Fengxiang
    Huang, Ya
    Li, Run
    Zhang, Shiliang
    Jiang, Qinyuan
    Luo, Yuxin
    Wang, Baoshun
    Zhang, Wenshuo
    Wu, Xueke
    Wang, Fei
    Lyu, Pei
    Zhao, Siming
    Xu, Weilin
    Wei, Fei
    Zhang, Rufan
    [J]. SCIENCE ADVANCES, 2022, 8 (26):
  • [4] Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity
    Chen, Yong
    Zhang, Yuanming
    Fan, Guozheng
    Song, Lizhu
    Jia, Gan
    Huang, Huiting
    Ouyang, Shuxin
    Ye, Jinhua
    Li, Zhaosheng
    Zou, Zhigang
    [J]. JOULE, 2021, 5 (12) : 3235 - 3251
  • [5] Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst
    Cho, Yohei
    Shoji, Shusaku
    Yamaguchi, Akira
    Hoshina, Takuya
    Fujita, Takeshi
    Abe, Hideki
    Miyauchi, Masahiro
    [J]. CHEMICAL COMMUNICATIONS, 2020, 56 (33) : 4611 - 4614
  • [6] Resonant Raman spectroscopy on enriched 13C carbon nanotubes
    Costa, Sara D.
    Fantini, Cristiano
    Righi, Ariete
    Bachmatiuk, Alicja
    Ruemmeli, Mark H.
    Saito, Riichiro
    Pimenta, Marcos A.
    [J]. CARBON, 2011, 49 (14) : 4719 - 4723
  • [7] Insight by In Situ Gas Electron Microscopy on the Thermal Behaviour and Surface Reactivity of Cobalt Nanoparticles
    Dembele, Kassioge
    Bahri, Mounib
    Melinte, Georgian
    Hirlimann, Charles
    Berliet, Adrien
    Maury, Sylvie
    Gay, Anne-Sophie
    Ersen, Ovidiu
    [J]. CHEMCATCHEM, 2018, 10 (18) : 4004 - 4009
  • [8] Surface Local Polarization Induced by Bismuth-Oxygen Vacancy Pairs Tuning Non-Covalent Interaction for CO2 Photoreduction
    Di, Jun
    Chen, Chao
    Zhu, Chao
    Long, Ran
    Chen, Hailong
    Cao, Xingzhong
    Xiong, Jun
    Weng, Yuxiang
    Song, Li
    Li, Shuzhou
    Li, Huaming
    Xiong, Yujie
    Liu, Zheng
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (41)
  • [9] A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover
    Ding, L.
    Zhou, R.
    Yuan, Y.
    Yang, H.
    Li, J.
    Yu, T.
    Liu, C.
    Wang, J.
    Li, S.
    Gao, H.
    Deng, Z.
    Li, N.
    Wang, Z.
    Gong, Z.
    Liu, G.
    Xie, J.
    Wang, S.
    Rong, Z.
    Deng, D.
    Wang, X.
    Han, S.
    Wan, W.
    Richter, L.
    Huang, L.
    Gou, S.
    Liu, Z.
    Yu, H.
    Jia, Y.
    Chen, B.
    Dang, Z.
    Zhang, K.
    Li, L.
    He, X.
    Liu, S.
    Di, K.
    [J]. SCIENCE ROBOTICS, 2022, 7 (62)
  • [10] Why Carbon Nanotubes Grow
    Ding, Li Ping
    McLean, Ben
    Xu, Ziwei
    Kong, Xiao
    Hedman, Daniel
    Qiu, Lu
    Page, Alister J.
    Ding, Feng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (12) : 5606 - 5613