Colliding pulse injection of polarized electron bunches in a laser-plasma accelerator

被引:3
作者
Bohlen S. [1 ]
Gong Z. [2 ]
Quin M.J. [2 ]
Tamburini M. [2 ]
Põder K. [1 ]
机构
[1] Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg
[2] Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg
来源
Physical Review Research | 2023年 / 5卷 / 03期
基金
英国科研创新办公室;
关键词
615.3 Magnetohydrodynamics (MHD) Power Generation - 701.2 Magnetism: Basic Concepts and Phenomena - 744.8 Laser Beam Interactions - 744.9 Laser Applications - 932.1 High Energy Physics - 932.1.1 Particle Accelerators - 932.3 Plasma Physics;
D O I
10.1103/PhysRevResearch.5.033205
中图分类号
学科分类号
摘要
Highly polarized, multi-kiloampere-current electron bunches from compact laser-plasma accelerators are desired for numerous applications. Current proposals to produce these beams suffer from intrinsic limitations to the reproducibility, charge, beam shape, and final polarization degree. In this paper, we propose colliding pulse injection (CPI) as a technique for the generation of highly polarized electron bunches from prepolarized plasma sources. Using particle-in-cell simulations, we show that colliding pulse injection enables trapping and precise control over electron spin evolution, resulting in the generation of high-current (multi-kA) electron bunches with high degrees of polarization (up to 95% for >2kA). Bayesian optimization is employed to optimize the multidimensional parameter space associated with CPI to obtain a percent-level energy spread, submicron normalized emittance electron bunches with 90% polarization using 100-TW class laser systems. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
相关论文
共 62 条
  • [1] Tolhoek H. A., Electron polarization, theory and experiment, Rev. Mod. Phys, 28, (1956)
  • [2] Abe K., Precision Measurement of the Deuteron Spin Structure Function (Equation presented), Phys. Rev. Lett, 75, (1995)
  • [3] Anthony P. L., Observation of Parity Nonconservation in Møller Scattering, Phys. Rev. Lett, 92, (2004)
  • [4] Schlimme B. S., Achenbach P., Ayerbe Gayoso C. A., Bernauer J. C., Bohm R., Bosnar D., Challand T., Distler M. O., Doria L., Fellenberger F., Measurement of the Neutron Electric to Magnetic Form Factor Ratio at (Equation presented) using the Reaction (Equation presented), Phys. Rev. Lett, 111, (2013)
  • [5] Androic D., Precision measurement of the weak charge of the proton, Nature (London), 557, (2018)
  • [6] Shiltsev V., Zimmermann F., Modern and future colliders, Rev. Mod. Phys, 93, (2021)
  • [7] Moortgat-Pick G., Abe T., Alexander G., Ananthanarayan B., Babich A. A., Bharadwaj V., Barber D., Bartl A., Brachmann A., Chen S., Polarized positrons and electrons at the linear collider, Phys. Rep, 460, (2008)
  • [8] Martin R., Weber G., Barday R., Fritzsche Y., Spillmann U., Chen W., Dubois R. D., Enders J., Hegewald M., Hess S., Polarization Transfer of Bremsstrahlung Arising from Spin-Polarized Electrons, Phys. Rev. Lett, 108, (2012)
  • [9] Abbott D., Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies, Phys. Rev. Lett, 116, (2016)
  • [10] Schultz P. J., Lynn K. G., Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Mod. Phys, 60, (1988)