Learning to Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning

被引:74
作者
Clegg, Alexander [1 ]
Yu, Wenhao [1 ]
Tan, Jie [2 ]
Liu, C. Karen [1 ]
Turk, Greg [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30303 USA
[2] Google Brain, Mountain View, CA USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2018年 / 37卷 / 06期
关键词
dressing; reinforcement learning; policy sequencing; GAME; GO;
D O I
10.1145/3272127.3275048
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Creating animation of a character putting on clothing is challenging due to the complex interactions between the character and the simulated garment. We take a model-free deep reinforcement learning (deepRL) approach to automatically discovering robust dressing control policies represented by neural networks. While deepRL has demonstrated several successes in learning complex motor skills, the data-demanding nature of the learning algorithms is at odds with the computationally costly cloth simulation required by the dressing task. This paper is the first to demonstrate that, with an appropriately designed input state space and a reward function, it is possible to incorporate cloth simulation in the deepRL framework to learn a robust dressing control policy. We introduce a salient representation of haptic information to guide the dressing process and utilize it in the reward function to provide learning signals during training. In order to learn a prolonged sequence of motion involving a diverse set of manipulation skills, such as grasping the edge of the shirt or pulling on a sleeve, we find it necessary to separate the dressing task into several subtasks and learn a control policy for each subtask. We introduce a policy sequencing algorithm that matches the distribution of output states from one task to the input distribution for the next task in the sequence. We have used this approach to produce character controllers for several dressing tasks: putting on a t-shirt, putting on a jacket, and robot-assisted dressing of a sleeve.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
[Anonymous], ACM T GRAPHIC
[2]  
[Anonymous], 2016, P 4 INT C LEARN REPR
[3]  
[Anonymous], COMPUTER ANIMATION S
[4]  
[Anonymous], 2015, ABS150205477 CORR
[5]  
[Anonymous], ABS170908685 CORR
[6]  
[Anonymous], 2017, ABS170702286 CORR
[7]  
[Anonymous], ACM T GRAPHICS
[8]  
[Anonymous], ABS170306905 CORR
[9]  
[Anonymous], COMPUTER GRAPHICS FO
[10]  
Balaguer B., 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), P3842, DOI 10.1109/IROS.2010.5649031