New lax integrable hierarchy of evolution equations and its infinite-dimensional BI-Hamiltonian structure

被引:0
|
作者
Yan, Zhen-Ya [1 ]
Zhang, Hong-Qing [1 ]
机构
[1] Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
来源
Wuli Xuebao/Acta Physica Sinica | 2001年 / 50卷 / 07期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1235 / 1236
相关论文
共 50 条
  • [31] A new hierarchy of generalized derivative nonlinear Schrodinger equations, its bi-Hamiltonian structure and finite-dimensional involutive system
    Yan, ZY
    Zhang, HQ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2001, 116 (11): : 1255 - 1263
  • [32] On the bi-Hamiltonian structure of the KdV hierarchy
    Ghosh, S
    Talukdar, B
    Shamanka, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (05) : 425 - 432
  • [33] A generalized Dirac soliton hierarchy and its bi-Hamiltonian structure
    Ye, Yujian
    Li, Zhihui
    Li, Chunxia
    Shen, Shoufeng
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2016, 60 : 67 - 72
  • [34] An integrable extension of TD hierarchy and generalized bi-Hamiltonian structures
    Liu, Huan
    Geng, Xianguo
    MODERN PHYSICS LETTERS B, 2015, 29 (21):
  • [35] NEW RESTRICTED FLOWS OF THE KDV HIERARCHY AND THEIR BI-HAMILTONIAN STRUCTURE
    RAUCHWOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1991, 160 (03) : 241 - 246
  • [36] An integrable generalization of the D-Kaup-Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy
    McAnally, Morgan
    Ma, Wen-Xiu
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 220 - 227
  • [37] BI-HAMILTONIAN STRUCTURE OF SUPER KP HIERARCHY
    FENG, Y
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) : 3180 - 3189
  • [38] The Modified Korteweg-de Vries Hierarchy: Lax Pair Representation and Bi-Hamiltonian Structure
    Choudhuri, Amitava
    Talukdar, Benoy
    Das, Umapada
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (3-4): : 171 - 179
  • [39] A New Nonlinear Integrable Couplings of GJ Equations Hierarchy and Its Hamiltonian Structure
    Liu, Dandan
    Xia, Tie-cheng
    BUSINESS, ECONOMICS, FINANCIAL SCIENCES, AND MANAGEMENT, 2012, 143 : 539 - 548
  • [40] BI-HAMILTONIAN STRUCTURE OF THE KAWACHI EQUATIONS
    Tudoran, Razvan M.
    Girban, Anania
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (04) : 625 - 629