A well-balanced finite volume solver for the 2D shallow water magnetohydrodynamic equations with topography
被引:1
作者:
Cisse, Abou
论文数: 0引用数: 0
h-index: 0
机构:
Mohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, MoroccoMohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
Cisse, Abou
[1
]
Elmahi, Imad
论文数: 0引用数: 0
h-index: 0
机构:
Mohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
Mohammed First Univ, ENSA, LMCS, Complexe Univ, Oujda 60000, MoroccoMohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
Elmahi, Imad
[1
,3
]
Kissami, Imad
论文数: 0引用数: 0
h-index: 0
机构:
Mohammed VI Polytech Univ, Coll Comp, Lot 660, Benguerir 43150, MoroccoMohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
Kissami, Imad
[2
]
Ratnani, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Mohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, MoroccoMohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
Ratnani, Ahmed
[1
]
机构:
[1] Mohammed VI Polytech Univ, IST&I, Lot 660, Benguerir 43150, Morocco
[2] Mohammed VI Polytech Univ, Coll Comp, Lot 660, Benguerir 43150, Morocco
[3] Mohammed First Univ, ENSA, LMCS, Complexe Univ, Oujda 60000, Morocco
In this paper, a second-order finite volume Non-Homogeneous Riemann Solver is used to obtain an approximate solution for the two-dimensional shallow water magnetohydrodynamic (SWMHD) equations considering non-flat bottom topography. We investigate the stability of a perturbed steady state, as well as the stability of energy in these equations after a perturbation of a steady state using a dispersive analysis. To address the elliptic constraint del . hB = 0, the GLM (Generalized Lagrange Multiplier) method designed specifically for finite volume schemes, is used. The proposed solver is implemented on unstructured meshes and verifies the exact conservation property. Several numerical results are presented to validate the high accuracy of our schemes, the well-balanced, and the ability to resolve smooth and discontinuous solutions. The developed finite volume Non-Homogeneous Riemann Solver and the GLM method offer a reliable approach for solving the SWMHD equations, preserving numerical and physical equilibrium, and ensuring stability in the presence of perturbations.
机构:
Univ Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, FranceUniv Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, France
Bouchut, Francois
;
Lhebrard, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, FranceUniv Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, France
机构:
Univ Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, FranceUniv Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, France
Bouchut, Francois
;
Lhebrard, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, FranceUniv Paris Est, CNRS, UPEM, Lab Anal & Math Appl,UPEC,UMR 8050, F-77454 Marne La Vallee, France