Bayesian image restoration for poisson corrupted image using a latent variational method with gaussian MRF

被引:0
作者
Shouno, Hayaru [1 ]
机构
[1] University of Electro-Communications, Chofu, Tokyo
关键词
Bayesian inference; Image restoration; Poisson corrupted image;
D O I
10.2197/ipsjtrans.8.15
中图分类号
学科分类号
摘要
We treat an image restoration problem with a Poisson noise channel using a Bayesian framework. The Poisson randomness might be appeared in observation of low contrast object in the field of imaging. The noise observation is often hard to treat in a theoretical analysis. In our formulation, we interpret the observation through the Poisson noise channel as a likelihood, and evaluate the bound of it with a Gaussian function using a latent variable method. We then introduce a Gaussian Markov random field (GMRF) as the prior for the Bayesian approach, and derive the posterior as a Gaussian distribution. The latent parameters in the likelihood and the hyperparameter in the GMRF prior could be treated as hidden parameters, so that, we propose an algorithm to infer them in the expectation maximization (EM) framework using loopy belief propagation (LBP). We confirm the ability of our algorithm in the computer simulation, and compare it with the results of other image restoration frameworks. © 2015 Information Processing Society of Japan.
引用
收藏
页码:15 / 24
页数:9
相关论文
共 23 条
  • [1] Rudin L., Osher S., Fatermi E., Nonlinear total variation based noise removal algorithms, Physica D., 60, pp. 259-268, (1992)
  • [2] Dabov K., Foi A., Katkovnik V., Egiazarian K., Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering, IEEE Trans. Image Processing, 16, 8, pp. 2080-2095, (2007)
  • [3] Aharon M., Elad M., Bruckstein A., K-SVD: An Algorithm for Desiging Overcomplete Dictionaries for Sparse Representation, IEEE Transacions on Signal Processing, 54, 11, pp. 4311-4322, (2006)
  • [4] Tanaka K., Statistical-mechanical approach to image processing, Journal of Physics A: Mathematical and General, 35, 37, pp. R81-R150, (2002)
  • [5] Portilla J., Strela V., Wainwright M.J., Simoncelli E.P., Image denoising using scale mixtures of gaussians in the wavelet domain, IEEE Trans. Image Processing, 12, pp. 1338-1351, (2003)
  • [6] Tanaka K., Titterington D.M., Statistical trajectory of an approximate EM algorithm for probabilistic image processing, Journal of Physics A: Mathematical and Theoretical, 40, 37, (2007)
  • [7] Shouno H., Okada M., Bayesian Image Restoration for Medical Images Using Radon Transform, Journal of the Physical Society of Japan, 79, (2010)
  • [8] Shouno H., Yamasaki M., Okada M., A Bayesian Hyperparameter Inference for Radon-Transformed Image Reconstruction, International Journal of Biomedical Imaging, (2011)
  • [9] Rodrigues I., Sanches J., Bioucas-Dias J., Denoising of medical images corrupted by Poisson noise, IEEE International Conference on Image Processing, pp. 1756-1759, (2008)
  • [10] de Decker A., Lee J.A., Velysen M., Vairance stabilizing transformations in patch-based bilateral filters for Poisson noise image denoising, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3673-3676, (2009)