Nonisothermal Crystallization Kinetics of Poly(butylene terephthalate)/Multiwalled Carbon Nanotubes Nanocomposites Prepared by In Situ Polymerization

被引:0
作者
Fang, Hui [1 ]
Wu, Fangjuan [1 ]
机构
[1] Fujian Univ Technol, Sch Mat Sci & Engn, Fuzhou 350118, Peoples R China
关键词
composites; crystallization; differential scanning calorimetry (DSC); polyesters; ring-opening polymerization; COMPOSITE; BEHAVIORS;
D O I
10.1002/APP.40849
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(butylene terephthalate)/multiwalled carbon nanotubes (PBT/MWNT) nanocomposites were prepared by in situ ring-opening polymerization of cyclic butylene terephthalate oligomers (CBT). The nonisothermal crystallization behavior of the neat PBT and the PBT/MWNT nanocomposites was analyzed quantitatively. The results reveal that the combined Avrami/Ozawa equation exhibits great advantages in describing the nonisothermal crystallization of PBT and its nanocomposites. The presence of MWNTs has the nucleation effect promoting crystallization rate for the nanocomposites, and the maximum one is observed in the nanocomposite having 0.75 wt % MWNT content. On the other hand, the addition of MWNTs has the impeding effect reducing the chain mobility and retarding crystallization, which is confirmed by the crystallization activation energies. However, the nucleation effect of MWNTs plays the dominant role in the crystallization of PBT/MWNT nanocomposites, in other words, the incorporation of MWNTs is increasing the crystallization rate of the nanocomposites. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[2]  
Avrami M., 1940, J. Chem. Phys, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[4]   Processing and assessment of poly(butylene terephthalate) nanocomposites reinforced with oxidized single wall carbon nanotubes [J].
Broza, G ;
Kwiatkowska, M ;
Roslaniec, Z ;
Schulte, K .
POLYMER, 2005, 46 (16) :5860-5867
[5]   Synthesis of a new polyaniline/nanotube composite:: "in-situ" polymerisation and charge transfer through site-selective interaction [J].
Cochet, M ;
Maser, WK ;
Benito, AM ;
Callejas, MA ;
Martínez, MT ;
Benoit, JM ;
Schreiber, J ;
Chauvet, O .
CHEMICAL COMMUNICATIONS, 2001, (16) :1450-1451
[6]   Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation [J].
Frizzell, CJ ;
in het Panhuis, M ;
Coutinho, DH ;
Balkus, KJ ;
Minett, AI ;
Blau, WJ ;
Coleman, JN .
PHYSICAL REVIEW B, 2005, 72 (24)
[7]   X-ray microdiffraction and micro-Raman study on an injection moulding SWCNT-polymer nanocomposite [J].
Garcia-Gutierrez, M. C. ;
Nogales, A. ;
Rueda, D. R. ;
Domingo, C. ;
Garcia-Ramos, J. V. ;
Broza, G. ;
Roslaniec, Z. ;
Schulte, K. ;
Ezquerra, T. A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (05) :798-805
[8]   Strategies for dispersing carbon nanotubes in highly viscous polymers [J].
Grossiord, N ;
Loos, J ;
Koning, CE .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (24) :2349-2352
[9]  
HAY JN, 1969, POLYMER, V10, P203, DOI 10.1016/0032-3861(69)90031-7
[10]   USE OF DIFFERENTIAL SCANNING CALORIMETRY TO STUDY POLYMER CRYSTALLIZATION KINETICS [J].
HAY, JN ;
FITZGERALD, PA ;
WILES, M .
POLYMER, 1976, 17 (11) :1015-1018