Boron-Doped Diamond MOSFETs With Gradual Channel Doping Density

被引:3
作者
Zhu, Zihui [1 ,2 ]
Ren, Zeyang [1 ,2 ]
Li, Yijiang [1 ,2 ]
Zhang, Jinfeng [1 ,2 ]
Zhang, Jincheng [1 ]
Su, Kai [1 ]
Zhu, Liaoliang [1 ]
Meng, Jintao [1 ]
Chen, Junfei [1 ,2 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, Sch Microelect, Natl Key Lab Wide Bandgap Semicond Devices & Integ, Xian 710071, Peoples R China
[2] Xidian Wuhu Res Inst, Wuhu 241002, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Boron-doped; diamond; gradual; ohmic contact;
D O I
10.1109/LED.2024.3435830
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The growth of gradual boron-doped diamond epitaxial layer was achieved by microwave plasma chemical vapor deposition (MPCVD). Secondary ion mass spectrometry (SIMS) results show that the effective doping concentration range is from 10(15) cm(-3) to 10(19) cm(-3), and the doping layer thickness is about 45 nm. Boron-doped diamond Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) was prepared by using 300 degrees C atomic layer deposition (ALD) Al2O3 as gate dielectric. The maximum output current and transconductance of the device reach -1.2 mA/mm and 127 mu S/mm, respectively, both of which are higher than the reported. Meanwhile, the device has a low threshold voltage of 3.3 V. We suggested that the low ohmic contact resistance (RC) induced by the high doping density on the sample surface and the thin doping layer thickness contribute to these high device performances.
引用
收藏
页码:1694 / 1697
页数:4
相关论文
共 25 条
  • [1] Angelone M., Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc.
  • [2] Arkhipova E. A., Semicon- ductors
  • [3] Normally-OFF Diamond Reverse Blocking MESFET
    Canas, J.
    Pakpour-Tabrizi, A. C.
    Trajkovic, T.
    Udrea, F.
    Eon, D.
    Gheeraert, E.
    Jackman, R. B.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (12) : 6279 - 6285
  • [4] Metal oxide semiconductor structure using oxygen-terminated diamond
    Chicot, G.
    Marechal, A.
    Motte, R.
    Muret, P.
    Gheeraert, E.
    Pernot, J.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (24)
  • [5] High breakdown voltage of boron-doped diamond metal semiconductor field effect transistor grown on freestanding heteroepitaxial diamond substrate
    Choi, Uiho
    Kwak, Taemyung
    Han, Sanghoon
    Kim, Seong-Woo
    Nam, Okhyun
    [J]. DIAMOND AND RELATED MATERIALS, 2022, 121
  • [6] Characteristics of zirconium and niobium contacts on boron-doped diamond
    Davydova, M.
    Taylor, A.
    Hubik, P.
    Fekete, L.
    Klimsa, L.
    Tremouilles, D.
    Soltani, A.
    Mortet, V.
    [J]. DIAMOND AND RELATED MATERIALS, 2018, 83 : 184 - 189
  • [7] Low-resistance ohmic contacts on boron-doped {113} oriented homoepitaxial diamond layers
    Hazdra, P.
    Laposa, A.
    Soban, Z.
    Voves, J.
    Lambert, N.
    Davydova, M.
    Povolny, V
    Taylor, A.
    Mortet, V
    [J]. DIAMOND AND RELATED MATERIALS, 2022, 121
  • [9] Inversion in Metal-Oxide-Semiconductor Capacitors on Boron-Doped Diamond
    Kovi, Kiran Kumar
    Vallin, Orjan
    Majdi, Saman
    Isberg, Jan
    [J]. IEEE ELECTRON DEVICE LETTERS, 2015, 36 (06) : 603 - 605
  • [10] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
    Liu, Dong-Yang
    Hao, Li-Cai
    Zhao, Wei-Kang
    Chen, Zi-Ang
    Tang, Kun
    Zhu, Shun-Ming
    Ye, Jian-Dong
    Zhang, Rong
    Zheng, You-Dou
    Gu, Shu-Lin
    [J]. CHINESE PHYSICS B, 2022, 31 (12)