Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin

被引:11
作者
Marella T.K. [1 ]
Tiwari A. [2 ]
机构
[1] International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State
[2] Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, 201 313, Uttar Pradesh
来源
Bioresource Technology | 2020年 / 307卷
关键词
Biorefinery; Diatom; EPA; Fucoxanthin; Microalgae;
D O I
10.1016/j.biortech.2020.123245
中图分类号
学科分类号
摘要
Diatom algae can produce bioactive compounds like fucoxanthin (FX) and ecosapentaenoic acid (EPA) which are of high demand in pharmaceutical and nutraceutical industries. Here, the influence of different light regimes in combination with major nutrients on growth, FX and EPA production by marine diatom Thalassiosira weissflogii were investigated. Batch cultures of T. weissflogii were illuminated under blue (BL), red (RL) and white (WL) light at two intensities. BL regime resulted in higher cell density with a specific growth rate of 2.49µ. Lipid productivity and lipid % as dry cell weight (DCW) was considerably higher in BL with EPA productivity of 33.4 mg L−1d−1. Fucoxanthin content as % DCW reached 0.95 (BL), 0.75 (RL) and 0.81 (WL) at mid exponential growth phase. The results further prove the plasticity of diatoms and provide a way for future metabolic engineering of T. weissflogii for potential microalgal bio-refinery for combined EPA and FX production. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 33 条
[21]  
Malviya S., Scalco E., Audic S., Vincent F., Veluchamy A., Poulain J., Wincker P., Iudicone D., de Vargas C., Bittner L., Insights into global diatom distribution and diversity in the world's ocean, Proc. Natl. Acad. Sci., 113, pp. E1516-E1525, (2016)
[22]  
Marella T.K., Datta A., Patil M.D., Dixit S., Tiwari A., Biodiesel production through algal cultivation in urban wastewater using algal floway, Bioresour. Technol., 280, pp. 222-228, (2019)
[23]  
Nur M.M.A., Muizelaar W., Boelen P., Buma A.G.J., Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent, J. Appl. Phycol., 31, pp. 111-122, (2019)
[24]  
Schiano di Visconte G., Spicer A., Chuck C.J., Allen M.J., The Microalgae Biorefinery: A Perspective on the Current Status and Future Opportunities Using Genetic Modification, Appl. Sci., 9, (2019)
[25]  
Sheehan J., Dunahay T., Benemann J., Roessler P., (1998)
[26]  
Sun H., Mao X., Wu T., Ren Y., Chen F., Liu B., Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii, Bioresour. Technol., 263, pp. 450-457, (2018)
[27]  
Tanaka T., Yabuuchi T., Maeda Y., Nojima D., Matsumoto M., Yoshino T., Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris, Bioresour. Technol., 245, pp. 567-572, (2017)
[28]  
Vella F.M., Sardo A., Gallo C., Landi S., Fontana A., d'Ippolito G., Annual outdoor cultivation of the diatom Thalassiosira weissflogii: productivity, limits and perspectives, Algal Res., 42, (2019)
[29]  
Wang W., Yu L.J., Xu C., Tomizaki T., Zhao S., Umena Y., Chen X., Qin X., Xin Y., Suga M., Han G., Kuang T., Shen J.R., Structural basis for blue-green light harvesting and energy dissipation in diatoms, Science, 363, (2019)
[30]  
Wang X., Luo S.W., Luo W., Yang W.D., Liu J.S., Li H.Y., Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production, Bioresour. Technol., 277, pp. 204-210, (2019)