Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin

被引:25
作者
Marella T.K. [1 ]
Tiwari A. [2 ]
机构
[1] International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State
[2] Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, 201 313, Uttar Pradesh
来源
Bioresource Technology | 2020年 / 307卷
关键词
Biorefinery; Diatom; EPA; Fucoxanthin; Microalgae;
D O I
10.1016/j.biortech.2020.123245
中图分类号
学科分类号
摘要
Diatom algae can produce bioactive compounds like fucoxanthin (FX) and ecosapentaenoic acid (EPA) which are of high demand in pharmaceutical and nutraceutical industries. Here, the influence of different light regimes in combination with major nutrients on growth, FX and EPA production by marine diatom Thalassiosira weissflogii were investigated. Batch cultures of T. weissflogii were illuminated under blue (BL), red (RL) and white (WL) light at two intensities. BL regime resulted in higher cell density with a specific growth rate of 2.49µ. Lipid productivity and lipid % as dry cell weight (DCW) was considerably higher in BL with EPA productivity of 33.4 mg L−1d−1. Fucoxanthin content as % DCW reached 0.95 (BL), 0.75 (RL) and 0.81 (WL) at mid exponential growth phase. The results further prove the plasticity of diatoms and provide a way for future metabolic engineering of T. weissflogii for potential microalgal bio-refinery for combined EPA and FX production. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 33 条
[1]  
Abidov M., Ramazanov Z., Seifulla R., Grachev S., The effects of Xanthigen<sup>TM</sup> In the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes, Obes. Metab., 12, pp. 72-81, (2010)
[2]  
Alexander H., Jenkins B.D., Rynearson T.A., Dyhrman S.T., Metatranscriptome analyses indicate resource partitioning between diatoms in the field, Proc. Natl. Acad. Sci. U. S. A., 112, pp. E2182-E2190, (2015)
[3]  
Arakaki A., Matsumoto T., Tateishi T., Matsumoto M., Nojima D., Tomoko Y., Tanaka T., UV-C irradiation accelerates neutral lipid synthesis in the marine oleaginous diatom Fistulifera solaris, Bioresour. Technol., 245, pp. 1520-1526, (2017)
[4]  
Bligh E.G., Dyer W.J., A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, 37, pp. 911-917, (1959)
[5]  
Breuer G., Lamers P.P., Martens D.E., Draaisma R.B., Wijffels R.H., Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus, Bioresour. Technol., 143, pp. 1-9, (2013)
[6]  
Capo X., Martorell M., Busquets-Cortes C., Tejada S., Tur J.A., Pons A., Sureda A., Resolvins as proresolving inflammatory mediators in cardiovascular disease, Eur. J. Med. Chem., 153, pp. 123-130, (2018)
[7]  
Cointet E., Wielgosz-Collin G., Bougaran G., Rabesaotra V., Goncalves O., Meleder V., Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains, PLoS One, 14, (2019)
[8]  
d'Ippolito G., Sardo A., Paris D., Vella F., Adelfi M., Botte P., Gallo C., Fontana A., Potential of lipid metabolism in marine diatoms for biofuel production, Biotechnol. Biofuels, 8, (2015)
[9]  
Desbois A.P., Mearns-Spragg A., Smith V.J., A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA), Mar. Biotechnol., 11, pp. 45-52, (2009)
[10]  
Desikachary T.V., (1959)