Reference point based evolutionary multi-objective optimization with dynamic resampling for production systems improvement

被引:4
作者
Ng A.H.C. [1 ]
Siegmund F. [1 ]
Deb K. [2 ]
机构
[1] University of Skövde, Skövde
[2] Michigan State University, East Lansing, MI
关键词
Dynamic resampling; Multi-criteria decision making; Multi-objective optimization; Production systems improvement;
D O I
10.1108/JSIT-10-2017-0084
中图分类号
学科分类号
摘要
Purpose: Stochastic simulation is a popular tool among practitioners and researchers alike for quantitative analysis of systems. Recent advancement in research on formulating production systems improvement problems into multi-objective optimizations has provided the possibility to predict the optimal trade-offs between improvement costs and system performance, before making the final decision for implementation. However, the fact that stochastic simulations rely on running a large number of replications to cope with the randomness and obtain some accurate statistical estimates of the system outputs, has posed a serious issue for using this kind of multi-objective optimization in practice, especially with complex models. Therefore, the purpose of this study is to investigate the performance enhancements of a reference point based evolutionary multi-objective optimization algorithm in practical production systems improvement problems, when combined with various dynamic re-sampling mechanisms. Design/methodology/approach: Many algorithms consider the preferences of decision makers to converge to optimal trade-off solutions faster. There also exist advanced dynamic resampling procedures to avoid wasting a multitude of simulation replications to non-optimal solutions. However, very few attempts have been made to study the advantages of combining these two approaches to further enhance the performance of computationally expensive optimizations for complex production systems. Therefore, this paper proposes some combinations of preference-based guided search with dynamic resampling mechanisms into an evolutionary multi-objective optimization algorithm to lower both the computational cost in re-sampling and the total number of simulation evaluations. Findings: This paper shows the performance enhancements of the reference-point based algorithm, R-NSGA-II, when augmented with three different dynamic resampling mechanisms with increasing degrees of statistical sophistication, namely, time-based, distance-rank and optimal computing buffer allocation, when applied to two real-world production system improvement studies. The results have shown that the more stochasticity that the simulation models exert, the more the statistically advanced dynamic resampling mechanisms could significantly enhance the performance of the optimization process. Originality/value: Contributions of this paper include combining decision makers’ preferences and dynamic resampling procedures; performance evaluations on two real-world production system improvement studies and illustrating statistically advanced dynamic resampling mechanism is needed for noisy models. © 2018, Emerald Publishing Limited.
引用
收藏
页码:489 / 512
页数:23
相关论文
共 50 条
  • [21] Evolutionary Multi-Objective Optimization Using Expected Improvement and Generalized DEA
    Yun, Yeboon
    Nakayama, Hirotaka
    Yoon, Min
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 663 - 668
  • [22] Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms
    Tang, Rong
    Li, Ke
    Ding, Wei
    Wang, Yuntao
    Zhou, Huicheng
    Fu, Guangtao
    WATER RESOURCES MANAGEMENT, 2020, 34 (03) : 1005 - 1020
  • [23] Reference point reconstruction-based firefly algorithm for irregular multi-objective optimization
    Yichen He
    Hu Peng
    Changshou Deng
    Xiwei Dong
    Zhijian Wu
    Zhaolu Guo
    Applied Intelligence, 2023, 53 : 962 - 983
  • [24] Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms
    Rong Tang
    Ke Li
    Wei Ding
    Yuntao Wang
    Huicheng Zhou
    Guangtao Fu
    Water Resources Management, 2020, 34 : 1005 - 1020
  • [25] Evolutionary Multi-objective Diversity Optimization
    Anh Viet Do
    Guo, Mingyu
    Neumann, Aneta
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 117 - 134
  • [26] Multi-strategy ensemble evolutionary algorithm for dynamic multi-objective optimization
    Wang Y.
    Li B.
    Memetic Computing, 2010, 2 (1) : 3 - 24
  • [27] Dynamic multi-objective optimization algorithm based on multi-regional center point prediction
    Ma X.-M.
    Yang J.-M.
    Sun H.
    Hu Z.-Y.
    Wei Q.-N.
    Kongzhi yu Juece/Control and Decision, 2022, 37 (10): : 2477 - 2486
  • [28] Accumulative Sampling for Noisy Evolutionary Multi-Objective Optimization
    Park, Taejin
    Ryu, Kwang Ryel
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 793 - 800
  • [29] Dynamic reference vectors and biased crossover use for inverse model based evolutionary multi-objective optimization with irregular Pareto fronts
    Lin, Yanyan
    Liu, Han
    Jiang, Qiaoyong
    APPLIED INTELLIGENCE, 2018, 48 (09) : 3116 - 3142
  • [30] Reference Point-based Nondominated Sorting Multi-objective Quantum-inspired Evolutionary Algorithm
    Sigmund, Dick
    Kim, Jong-Hwan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2462 - 2469