Extreme-Mass-Ratio Inspirals in Ultralight Dark Matter

被引:26
作者
Duque, Francisco [1 ,2 ]
Macedo, Caio F. B. [3 ]
Vicente, Rodrigo [4 ]
Cardoso, Vitor [2 ,5 ,6 ]
机构
[1] Albert Einstein Inst, Max Planck Inst Grav Phys, Muhlenberg 1, D-14476 Potsdam, Germany
[2] Univ Lisboa UL, Inst Super Tecn IST, Dept Fis, CENTRA, Ave Rovisco Pais 1, P-1049 Lisbon, Portugal
[3] Univ Fed Para, Fac Fis, Campus Salinopolis, BR-68721000 Salinopolis, PA, Brazil
[4] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain
[5] Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[6] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
SUPERMASSIVE BLACK-HOLES; DYNAMICAL FRICTION; EVOLUTION; CONSERVATION; GALAXIES; STARS; DISK; GAS;
D O I
10.1103/PhysRevLett.133.121404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Previous works have argued that future gravitational-wave detectors will be able to probe the properties of astrophysical environments where binaries coalesce, including accretion disks, but also dark matter structures. Most analyses have resorted to a Newtonian modeling of the environmental effects, which are not suited to study extreme-mass-ratio inspirals immersed in structures of ultralight bosons. In this Letter, we use relativistic perturbation theory to consistently study these systems in spherical symmetry. We compute the flux of scalar particles and the rate at which orbital energy is dissipated via gravitational radiation and depletion of scalars, i.e., dynamical friction. Our results confirm that the Laser Interferometer Space Antenna will be able to probe ultralight dark matter structures by tracking the phase of extrememass-ratio inspirals.
引用
收藏
页数:8
相关论文
共 124 条
[1]  
Abbott B., 2020, Astrophys. J. Lett., V892, pL3
[2]   Commentary on Currie et al. (2017): Low-risk gambling limits-a bridge too far? [J].
Abbott, Max W. .
ADDICTION, 2017, 112 (11) :2021-2022
[3]  
Abbott R., 2020, Phys. Rev. Lett., V125, P101102, DOI [10.1103/PhysRevLett.125.101102, DOI 10.1103/PHYSREVLETT.125.101102]
[4]  
Abbott R., 2020, Astrophys. J. Lett., V896, pL44, DOI DOI 10.3847/2041-8213/AB960F
[5]   Foundations of Black Hole Accretion Disk Theory [J].
Abramowicz, Marek A. ;
Fragile, P. Chris .
LIVING REVIEWS IN RELATIVITY, 2013, 16
[6]  
Agazie G., 2023, Astrophys. J. Lett., V951
[7]   Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star [J].
Allen, G ;
Andersson, N ;
Kokkotas, KD ;
Schutz, BF .
PHYSICAL REVIEW D, 1998, 58 (12)
[8]  
Amaro-Seoane P, 2017, Arxiv, DOI arXiv:1702.00786
[9]   Response of ultralight dark matter to supermassive black holes and binaries [J].
Annulli, Lorenzo ;
Cardoso, Vitor ;
Vicente, Rodrigo .
PHYSICAL REVIEW D, 2020, 102 (06)
[10]   The second data release from the European Pulsar Timing Array: III. Search for gravitational wave signals [J].
不详 .
ASTRONOMY & ASTROPHYSICS, 2023, 678