Mixed-mode (I plus II) fatigue crack growth of marine steels in Arctic environments

被引:2
作者
Qiao, Kaiqing [1 ]
Liu, Zhijie [1 ]
Guo, Qiuyu [1 ]
Wang, Xiaobang [1 ]
Zhang, Shengwei [1 ]
机构
[1] Dalian Maritime Univ, Naval Architecture & Ocean Engn Coll, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
Arctic equipment; Fatigue crack growth; Low-temperature mixed mode (I plus II); Fractography; Numerical simulation; PROPAGATION RATES; PREDICTION;
D O I
10.1016/j.oceaneng.2024.118686
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In the Arctic, the fatigue properties of marine steels under low temperatures and complex loads are essential for the safety of ship navigation. In this study, the fatigue crack growth (FCG) characteristics of EH36 and EQ70 steels are explored under low-temperature mixed mode (I + II) through experiments and numerical simulation. Experimental results show that the FCG life and the crack growth retardation (CGR) effect of both steels correlate positively with the loading angle and negatively with the temperature. The prediction results for FCG path indicate that the Maximum Tangential Stress (MTS) criterion provides accurate predictions for loading angles less than 45 degrees in low-temperature mixed mode (I + II), while the Richard model is more suitable for the loading angle of 60 degrees. The simulation results show that, when the crack deflects, KII decreases rapidly in magnitude while KI gradually increases and becomes dominant. The SEM results for the FCG fracture surfaces in both steels revealed that the roughness of the fracture surface is positively correlated with the loading angle, moreover clear transition regions are observed between the pre-crack and crack growth regions.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Ductile fracture toughness of Al 5754-H111 alloy using essential work of fracture method [J].
Abdellah, Mohammed Y. ;
Ghazaly, Nouby M. ;
Kamal, Al-Shimaa H. ;
Seleem, Abo-El Hagag A. ;
Abdel-Jaber, G. T. .
AIMS MATERIALS SCIENCE, 2023, 10 (02) :370-389
[2]   METHOD TO PRODUCE UNIFORM PLANE-STRESS STATES WITH APPLICATIONS TO FIBER-REINFORCED MATERIALS [J].
ARCAN, M ;
HASHIN, Z ;
VOLOSHIN, A .
EXPERIMENTAL MECHANICS, 1978, 18 (04) :141-146
[3]   A T-stress controlled specimen for mixed mode fracture experiments on brittle materials [J].
Ayatollahi, M. R. ;
Sedighiani, Karo .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 36 :83-93
[4]  
Biner S. B., 2001, International Journal of Fatigue, V23, pS259, DOI 10.1016/S0142-1123(01)00146-3
[5]   Modified two-parameter fracture model for bone [J].
Carpinteri, Andrea ;
Berto, Filippo ;
Fortese, Giovanni ;
Ronchei, Camilla ;
Scorza, Daniela ;
Vantadori, Sabrina .
ENGINEERING FRACTURE MECHANICS, 2017, 174 :44-53
[6]   Investigation of mixed mode-I/II fracture problems - Part 2: evaluation and development of mixed mode-I/II fracture criteria [J].
Demir, O. ;
Ayhan, A. O. .
FRATTURA ED INTEGRITA STRUTTURALE, 2016, 10 (35) :340-349
[7]   Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling [J].
Demir, Oguzhan ;
Ayhan, Ali O. ;
Iric, Sedat ;
Lekesiz, Huseyin .
CHINESE JOURNAL OF AERONAUTICS, 2018, 31 (07) :1525-1534
[8]   Numerical Simulation of Mixed-Mode Fatigue Crack Growth for Compact Tension Shear Specimen [J].
Fageehi, Yahya Ali ;
Alshoaibi, Abdulnaser M. .
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2020, 2020
[9]   Fatigue crack growth prediction method for offshore platform based on digital twin [J].
Fang, Xin ;
Wang, Honghui ;
Li, Wenjing ;
Liu, Guijie ;
Cai, Baoping .
OCEAN ENGINEERING, 2022, 244
[10]   The relationship between surface roughness and fatigue crack growth rate in AA7050-T7451 subjected to periodic underloads [J].
Field, I. ;
Dixon, B. ;
Kandare, E. ;
Tian, J. ;
Barter, S. .
INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167