Effect of the structural and phase state on the deformation behavior and mechanical properties of the ultrafine-grained titanium alloy (Ti–Al–V–Мо) at temperatures in the range of 293–973 K

被引:0
作者
Grabovetskaya G.P. [1 ]
Mishin I.P. [1 ]
Stepanova E.N. [2 ]
Zabudchenko O.V. [1 ]
Ratochka I.V. [1 ]
机构
[1] Federal State Institution of Science Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk
[2] National Research Tomsk Polytechnic University, Tomsk
关键词
Phase composition; Plastic deformation localization; Superplastic flow; Titanium alloy; Ultrafine-grained state;
D O I
10.1016/j.msea.2020.140334
中图分类号
学科分类号
摘要
The development of plastic deformation in an ultrafine-grained titanium alloy (Ti–Al–V–Mo; hereinafter VT16 alloy) under tension with a rate of 6.9·10−3 s−1 in the temperature range of 293–973 K is investigated depending on the structure and phase composition of the alloy. It has been established that the deviation of the phase composition from the equilibrium one toward the increasing β phase enhances the resistance of the UFG VT16 alloy to the localization of plastic deformation during tension at low temperatures (293–673 K). Under tension of the UFG VT16 alloy in the temperature range of the superplastic flow (823–973 K), the indicated deviation of the phase composition from the equilibrium one contributes to a greater elongation to failure. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 49 条
  • [1] Peters M., Leyens C., Titanium and Titanium Alloys: Fundamentals and Applications, (2003)
  • [2] Moiseyev V.N., Titanium Alloys. Russian Aircraft and Aerospace Applications, (2005)
  • [3] Niinomi M., Nakai M., Hieda J., Development of new metallic alloys for biomedical applications, Acta Biomater., 8, pp. 3888-3903, (2012)
  • [4] Brunette D.M., Tengvall P., Textor M., Thomsen P., Titanium in Medicine, (2001)
  • [5] Meyers M.A., Mishra A., Benson D.J., Mechanical properties of nanocrystalline materials, Prog. Mater. Sci., 51, pp. 427-556, (2006)
  • [6] Ilyin A.A., Kolachev B.A., Polkin I.S., Titanium Alloys. Composition, Structure, Properties. Reference Book, (2009)
  • [7] Yilmazer H., Niinomi M., Nakai M., Cho K., Hieda J., Todaka Y., Miyazaki T., Mechanical properties of a medical beta-type titanium alloy with specific microstructural evolution through high-pressure torsion, Mater. Sci. Eng. C, 33, pp. 2499-2507, (2013)
  • [8] Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T., Fundamentals of superior properties in bulk nanoSPD materials, Mater. Res. Lett., 4, 1, pp. 1-21, (2017)
  • [9] Zherebtsov S.V., Kudryavtsev E.A., Salishchev G.A., Straumal B.B., Semiatin S.L., Microstructure evolution and mechanical behavior of ultrafine Ti–6Al–4V during low temperature superplastic deformation, Acta Mater., 121, pp. 152-163, (2016)
  • [10] Ashida M., Chen P., Doi H., Tsutsumi Y., Hanawa T., Horita Z., Superplasticity in the Ti–6Al–Nb alloy processed by high-pressure torsion, Mater. Sci. Eng., A, 640, pp. 449-453, (2015)