共 14 条
- [1] Arzt S., Rasthofer S., Fritz C., Et al., Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps, ACM SIGPLAN Notices, 49, 6, pp. 259-269, (2014)
- [2] Li L., Bartel A., Bissyande T.F., Et al., Iccta: Detecting inter-component privacy leaks in Android Apps, Proceedings of the 37th ICSE, pp. 280-291, (2015)
- [3] Wei F., Roy S., Ou X., Et al., Amandroid: A precise and general inter-component data flow analysis framework for security vetting of Android Apps, Proceedings of the 2014 ACM SIGSAC, pp. 1329-1341, (2014)
- [4] Yang Z., Yang M., Zhang Y., Et al., Appintent: Analyzing sensitive data transmission in Android for privacy leakage detection, Proceedings of the SIGSAC, pp. 1043-1054, (2013)
- [5] Huang J., Zhang X., Tan L., Et al., AsDroid: Detecting stealthy behaviors in Android applications by user interface and program behavior contradiction, Proceedings of the 36th ICSE, pp. 1036-1046, (2014)
- [6] Bayer U., Comparetti P.M., Hlauschek C., Et al., Scalable, behavior-based malware clustering, Network and Distributed System Security Symposium, pp. 8-11, (2009)
- [7] Burguera I., Zurutuza U., Nadjm-Tehrani S., Crowdroid: Behavior-based malware detection system for Android, Proceedings of the Security and Privacy in Smartphones and Mobile Devices, pp. 15-26, (2011)
- [8] Jang J.W., Yun J., Woo J., Et al., Android-profiler: Anti-malware system based on behavior profiling of mobile malware, Proceedings of the 23rd WWW, pp. 737-738, (2014)
- [9] Yan L.K., Yin H., Droidscope: Seamlessly reconstructing the os and dalvik semantic views for dynamic Android malware analysis, USENIX Security Symposium, pp. 569-584, (2012)
- [10] Lantz P., Droidbox: Dynamic analysis of Android Apps