SAR Image Target Recognition Using Diffusion Model and Scattering Information

被引:2
作者
Sun, Sheng-Kai [1 ]
He, Zi [1 ]
Fan, Zhen-Hong [1 ]
Ding, Da-Zhi [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Commun Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Radar polarimetry; Scattering; Target recognition; Image recognition; Training; Diffusion models; Information processing; Diffusion model; few-shot samples; synthetic aperture radar (SAR); target recognition; NETWORK;
D O I
10.1109/LGRS.2024.3466233
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The synthetic aperture radar (SAR) imaging environment, especially with limited samples, poses a serious challenge to automatic target recognition (ATR) in modern electronic reconnaissance systems. To enhance SAR image recognition performance, this study proposes a technique leveraging a diffusion model and scattering information. This method involves SAR image generation and scattering information processing to improve generalization with few-shot samples. First, the number of few-shot SAR samples was augmented using the denoising diffusion probabilistic model (DDPM). Then, the scattering information is extracted to stably calculate SAR image similarity from the scattering mechanism. Finally, the recognition task is effectively accomplished through the optimal integration of the recognition network and scattering similarity. Simulation results demonstrate that the proposed method achieves superior SAR image generation quality and recognition accuracy compared to the existing methods when the available data are extremely limited.
引用
收藏
页数:5
相关论文
共 23 条
[1]  
Barratt S, 2018, Arxiv, DOI arXiv:1801.01973
[2]   Feature detection for image analytics via FPGA acceleration [J].
Chang, H. -Y. ;
Jiang, I. H. -R. ;
Hofstee, H. P. ;
Jamsek, D. ;
Nam, G. -J. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2015, 59 (2-3)
[3]  
Deng J., 2023, IEEE Geosci. Remote Sens. Lett., V21, P1
[4]   Robust method for the matching of attributed scattering centers with application to synthetic aperture radar automatic target recognition [J].
Ding, Baiyuan ;
Wen, Gongjian ;
Zhong, Jinrong ;
Ma, Conghui ;
Yang, Xiaoliang .
JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
[5]   Few-Shot SAR Target Classification via Metalearning [J].
Fu, Kun ;
Zhang, Tengfei ;
Zhang, Yue ;
Wang, Zhirui ;
Sun, Xian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Heusel M, 2017, ADV NEUR IN, V30
[8]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[9]  
Larsen ABL, 2016, PR MACH LEARN RES, V48
[10]  
Nichol A, 2021, PR MACH LEARN RES, V139