A novel route to obtain metal and oxide nanoparticles co-existing on a substrate

被引:18
作者
Serrano A. [1 ,2 ]
Fernández J.F. [2 ]
Rodríguez de la Fuente O. [1 ,3 ]
García M.A. [2 ,3 ]
机构
[1] Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid
[2] Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, C/ Kelsen 5, Cantoblanco, Madrid
[3] Instituto de Magnetismo Aplicado “Salvador Velayos”, Universidad Complutense de Madrid, Madrid
关键词
Annealing; Hybrid nanoparticles; Surface plasmons; Thin films;
D O I
10.1016/j.mtchem.2017.02.005
中图分类号
学科分类号
摘要
In this work we present a novel route to cover large surfaces with metal and oxide nanoparticles (NPs) by growing and annealing of metallic bilayers. We have used this method to fabricate ensembles of Au and α-Fe2O3 NPs on silica substrates from Fe/Au bilayers. The morphology of the hybrid nanostructures and the presence of defects and disorder can be tuned through the processing parameters as the initial film thickness and the annealing conditions. The proximity effects between both types of NPs alter their physical properties. In particular, we observe that the presence of α-Fe2O3 NPs modifies the surface plasmon resonance of Au NPs. © 2017 Elsevier Ltd
引用
收藏
页码:64 / 72
页数:8
相关论文
共 50 条
[1]  
Aggarwal S., Monga A.P., Perusse S.R., Ramesh R., Ballarotto V., Williams E.D., Chalamala B.R., Wei Y., Reuss R.H., Spontaneous ordering of oxide nanostructures, Science, 287, pp. 2235-2237, (2000)
[2]  
Aggarwal S., Ogale S.B., Ganpule C.S., Shinde S.R., Novikov V.A., Monga A.P., Burr M.R., Ramesh R., Ballarotto V., Williams E.D., Oxide nanostructures through self-assembly, Appl. Phys. Lett., 78, (2001)
[3]  
Shipway A.N., Katz E., Willner I., Nanoparticle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem., 1, pp. 18-52, (2000)
[4]  
Shipway A.N., Willner I., Nanoparticles as structural and functional units in surface-confined architectures, Chem. Commun. (Camb), 20, pp. 2035-2045, (2001)
[5]  
Westcott S.L., Oldenburg S.J., Lee T.R., Halas N.J., Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces, Langmuir, 7463, pp. 5396-5401, (1998)
[6]  
Matheu P., Lim S.H., Derkacs D., McPheeters C., Yu E.T., Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices, Appl. Phys. Lett., 93, (2008)
[7]  
Sundararaja S.P., Grady N.K., Mirin N., Halas N.J., Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode, Nano Lett., 8, pp. 624-630, (2008)
[8]  
Pillai S., Catchpole K.R., Trupke T., Green M.A., Surface plasmon enhanced silicon solar cells, J. Appl. Phys., 101, (2007)
[9]  
Santos A., Deen M., Marsal L., Low-cost fabrication technologies for nanostructures: state-of-the-art and potentia, Nanotechnology, 26, (2015)
[10]  
Presland A.E.B., Price G.L., Trimm D.L., Hillock formation by surface diffusion on thin silver films, Surf. Sci., 29, pp. 424-434, (1972)