Multiplication distributivity of proper and improper intervals

被引:27
|
作者
Popova, E.D. [1 ]
机构
[1] Inst. of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 8, BG-1113 Sofia, Bulgaria
关键词
D O I
10.1023/A:1011470131086
中图分类号
学科分类号
摘要
The arithmetic on an extended set of proper and improper intervals presents algebraic completion of the conventional interval arithmetic allowing thus efficient solution of some interval algebraic problems. In this paper we summarize and present all distributive relations, known by now, on multiplication and addition of generalized (proper and improper) intervals.
引用
收藏
页码:129 / 140
相关论文
共 50 条
  • [31] Comment on "Proper and improper chiral magnetic interactions"
    Cardias, Ramon
    Szilva, Attila
    Bergman, Anders
    Kvashnin, Yaroslav
    Fransson, Jonas
    Streib, Simon
    Delin, Anna
    Katsnelson, Mikhail I.
    Thonig, Danny
    Klautau, Angela Burlamaqui
    Eriksson, Olle
    Nordstrom, Lars
    PHYSICAL REVIEW B, 2022, 105 (02)
  • [32] Proper reparametrization for inherently improper unirational varieties
    Shen, Liyong
    Chionh, Engwee
    Gao, Xiao-Shan
    Li, Jia
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (02) : 367 - 380
  • [33] PROPER AND IMPROPER WEIGHT-LOSS PROGRAMS
    不详
    AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 1983, 54 (08): : 751 - 754
  • [34] Proper and improper administration of oily nasal sprays
    Griesman, BL
    ARCHIVES OF OTOLARYNGOLOGY, 1944, 39 (02): : 124 - 136
  • [35] A Gaussian alternative to using improper confidence intervals
    Plante, Andre
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (04): : 773 - 801
  • [36] Improper and proper posteriors with improper priors in a hierarchical model with a beta-binomial likelihood
    Hadjicostas, P
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (08) : 1905 - 1914
  • [38] CONCRETE IDEAL MULTIPLICATION FOR ALGEBRAIC SYSTEMS AND ITS RELATION TO CONGRUENCE DISTRIBUTIVITY
    HAGEMANN, J
    HERRMANN, C
    ARCHIV DER MATHEMATIK, 1979, 32 (03) : 234 - 245
  • [39] Proper and improper ferroelastics with perovskite-derived structures
    Talanov, M. V.
    Trotsenko, E. G.
    FERROELECTRICS, 2023, 612 (01) : 36 - 44
  • [40] ON PROPER AND IMPROPER EFFICIENT SOLUTIONS OF OPTIMAL PROBLEMS WITH MULTICRITERIA
    TAMURA, K
    ARAI, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 38 (02) : 191 - 205