Multimodal Connectivity-Guided Glioma Segmentation From Magnetic Resonance Images via Cascaded 3D Residual U-Net

被引:0
|
作者
Sun, Xiaoyan [1 ]
Hu, Chuhan [1 ]
He, Wenhan [1 ]
Yuan, Zhenming [1 ]
Zhang, Jian [1 ]
机构
[1] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
3D U-Net; brain tumor segmentation; hierarchical structure; multimodal MRI; residual network;
D O I
10.1002/ima.23206
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Glioma is a type of brain tumor with a high mortality rate. Magnetic resonance imaging (MRI) is commonly used for examination, and the accurate segmentation of tumor regions from MR images is essential to computer-aided diagnosis. However, due to the intrinsic heterogeneity of brain glioma, precise segmentation is very challenging, especially for tumor subregions. This article proposed a two-stage cascaded method for brain tumor segmentation that considers the hierarchical structure of the target tumor subregions. The first stage aims to identify the whole tumor (WT) from the background area; and the second stage aims to achieve fine-grained segmentation of the subregions, including enhanced tumor (ET) region and tumor core (TC) region. Both stages apply a deep neural network structure combining modified 3D U-Net with a residual connection scheme to tumor region and subregion segmentation. Moreover, in the training phase, the 3D masks generation of subregions with potential incomplete connectivity are guided by the completely connected regions. Experiments were performed to evaluate the performance of the methods on both area and boundary accuracy. The average dice score of the WT, TC, and ET regions on BraTS 2020 dataset is 0.9168, 0.0.8992, 0.8489, and the Hausdorff distance is 6.021, 9.203, 12.171, respectively. The proposed method outperforms current works, especially in segmenting fine-grained tumor subregions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] GAIR-U-Net: 3D guided attention inception residual u-net for brain tumor segmentation using multimodal MRI images
    Rutoh, Evans Kipkoech
    Guang, Qin Zhi
    Bahadar, Noor
    Raza, Rehan
    Hanif, Muhammad Shehzad
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (06)
  • [2] dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI
    Raza, Rehan
    Bajwa, Usama Ijaz
    Mehmood, Yasar
    Anwar, Muhammad Waqas
    Jamal, M. Hassan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [3] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [4] Sub-region Segmentation of Brain Tumors from Multimodal MRI Images Using 3D U-Net
    Ali, Ammar Alhaj
    Katta, Rasin
    Jasek, Roman
    Chramco, Bronislav
    Krayem, Said
    DATA SCIENCE AND ALGORITHMS IN SYSTEMS, 2022, VOL 2, 2023, 597 : 357 - 367
  • [5] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [6] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [7] LIU-NET: lightweight Inception U-Net for efficient brain tumor segmentation from multimodal 3D MRI images
    Shahid, Gul e Sehar
    Ahmad, Jameel
    Warraich, Chaudary Atif Raza
    Ksibi, Amel
    Alsenan, Shrooq
    Arshad, Arfan
    Raza, Rehan
    Shaikh, Zaffar Ahmed
    PEERJ COMPUTER SCIENCE, 2025, 11
  • [8] 3D AIR-UNet: attention–inception–residual-based U-Net for brain tumor segmentation from multimodal MRI
    Vani Sharma
    Mohit Kumar
    Arun Kumar Yadav
    Neural Computing and Applications, 2025, 37 (16) : 9969 - 9990
  • [9] Automated Brain Tumour Segmentation Using Cascaded 3D Densely-Connected U-Net
    Ghaffari, Mina
    Sowmya, Arcot
    Oliver, Ruth
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 481 - 491
  • [10] Medical Image Segmentation Based on 3D U-net
    Chen, Silu
    Hu, Guanghao
    Sun, Jun
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 130 - 133