Calculus of variations — isoperimetric inequalities for finite perimeter sets under lower ricci curvature bounds, by Fabio Cavalletti and Andrea Mondino, communicated on February 9, 2018

被引:0
作者
Cavalletti F. [1 ]
Mondino A. [2 ]
机构
[1] Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, Pavia
[2] Mathematics Institute, University of Warwick, Zeeman Building, Coventry
来源
| 2018年 / European Mathematical Society Publishing House卷 / 29期
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Isopetrimetric inequality; Localization technique; Optimal transport; Ricci curvature; Sets of finite perimeter;
D O I
10.4171/RLM/814
中图分类号
学科分类号
摘要
We prove that the results regarding the Isoperimetric inequality and Cheeger constant formulated in terms of the Minkowski content, obtained by the authors in previous papers [15, 16] in the framework of essentially non-branching metric measure spaces verifying the local curvature dimension condition, also hold in the stronger formulation in terms of the perimeter. © European Mathematical Society Publishing House. All rights reserved.
引用
收藏
页码:413 / 430
页数:17
相关论文
共 39 条
[1]  
Ambrosio L., Some fine properties of sets of finite perimeter in ahlfors regular metric measure spaces, Adv. Math., 159, pp. 51-67, (2001)
[2]  
Ambrosio L., Fine properties of sets of finite perimeter in doubling metric measure spaces, Set-Valued Anal, 10, pp. 111-128, (2002)
[3]  
Ambrosio L., Di Marino S., Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal., 266, pp. 4150-4188, (2014)
[4]  
Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, (2000)
[5]  
Ambrosio L., Gigli N., Di Marino S., Perimeter as relaxed minkowski content in metric measure spaces, Nonlinear Analysis TMA, 153, pp. 78-88, (2017)
[6]  
Ambrosio L., Gigli N., Mondino A., Rajala T., Riemannian ricci curvature lower bounds in metric measure spaces with s-finite measure, Trans. Amer. Math. Soc., 367, 7, pp. 4661-4701, (2015)
[7]  
Ambrosio L., Gigli N., Savare G., Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Invent. Math., 195, 2, pp. 289-391, (2014)
[8]  
Ambrosio L., Gigli N., Savare G., Metric measure spaces with riemannian ricci curvature bounded from below, Duke Math. J., 163, pp. 1405-1490, (2014)
[9]  
Ambrosio L., Mondino A., Savare G., Nonlinear Di¤Usion Equations and Curvature Conditions in Metric Measure Spaces, (2015)
[10]  
Bacher K., Sturm K.-T., Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259, pp. 28-56, (2010)