Body biasing linearization technique for Wireless Body Area Network transmitter

被引:1
|
作者
Liu Y. [1 ]
Yang Y. [1 ]
Li D. [1 ]
Shi Z. [1 ]
机构
[1] School of Microelectronics, Xidian University, Xi'an
来源
Liu, Yang (liu_yang@stu.xidian.edu.cn) | 1600年 / Science Press卷 / 39期
基金
中国国家自然科学基金;
关键词
Amplifier; Integrated circuit; Linearization; Wireless Body Area Network (WBAN);
D O I
10.11999/JEIT160297
中图分类号
学科分类号
摘要
A body biasing linearization technique is proposed to shape output spectrum mask to meet the stringent specification of the Human Body Communication (HBC) standard for Wireless Body Area Network (WBAN). Body biasing of the buffer transistors is properly designed, accordingly second-order nonlinearity coefficient is tuned so that Second order InterModulation product (IM2) at the output of buffer is cancelled. Under 0.35 μm CMOS process and a supply voltage of 1.8 V, a sample HBC transmitter based on body biasing is designed. Simulation results show that an optimum of 90 dBm IIP2 can be obtained and output transmit spectral mask at 1 MHz is attenuated to be -130 dBr (dB relative to the center frequency). Compared with conventional circuits, an improvement of 23 dB spectrum attenuation is achieved, satisfying the -120 dBr requirement of IEEE 802.15.6 for WBAN. © 2017, Science Press. All right reserved.
引用
收藏
页码:499 / 503
页数:4
相关论文
共 13 条
  • [1] Zou W., Kang F., Du G., Et al., Physical layer proposal design and interference analysis based on Chinese medical band in wireless body area network, Journal of Electronics & Information Technology, 37, 2, pp. 429-434, (2015)
  • [2] Sun Y., Jiang Y., Wu Y., Et al., Improved random incomplete coloring for interference mitigation in wireless body area networks, Journal of Electronics & Information Technology, 37, 9, pp. 2204-2210, (2015)
  • [3] IEEE 802.15.6-2012. IEEE standard for local and metropolitan area networks-part 15.6: Wireless body area networks, (2012)
  • [4] Lee H., Lee K., Hong S., Et al., A 5.5mW IEEE-802.15.6 wireless body-area-network standard transceiver for multichannel electro-acupuncture application, IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 452-453, (2013)
  • [5] Lee H., Cho H., Yoo H.J., A 33 μW/node duty cycle controlled HBC transceiver system for medical BAN with 64 sensor nodes, IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1-8, (2014)
  • [6] Cho H., Lee H., Bae J., Et al., A 5.2mW IEEE 802.15.6 HBC standard compatible transceiver with power efficient delay-locked-loop based BPSK demodulator, IEEE Asian Solid-State Circuits Conference,, pp. 297-300, (2014)
  • [7] Onizuka K., Ishihara H., Hosoya M., Et al., A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion, IEEE Journal of Solid-State Circuits, 47, 8, pp. 1820-1827, (2012)
  • [8] Hu S., Kousai S., Wang H., A broadband mixed-signal CMOS power amplifier with a hybrid class-G Doherty efficiency enhancement technique, IEEE Journal of Solid-State Circuits, 51, 3, pp. 598-613, (2016)
  • [9] Ba A., Chillara V.K., Liu Y.H., Et al., A 2.4 GHz class-D power amplifier with conduction angle calibration for -50dBc harmonic emissions, Radio Frequency Integrated Circuits Symposium, pp. 239-242, (2014)
  • [10] Liu J., Hu B., Wang G., Et al., A predistortion1 linearizer for Ku-band traveling wave tube amplifier, Journal of Electronics & Information Technology, 36, 10, pp. 2515-2520, (2014)