Vacuum entanglement probes for ultra-cold atom systems

被引:1
作者
Gooding, Cisco [1 ]
Sachs, Allison [2 ]
Mann, Robert B. [2 ,3 ]
Weinfurtner, Silke [1 ,4 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
[4] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 10期
基金
加拿大自然科学与工程研究理事会; 英国科学技术设施理事会;
关键词
relativistic quantum information; quantum optics; ultra-cold atoms;
D O I
10.1088/1367-2630/ad8675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study explores the transfer of nonclassical correlations from an ultra-cold atom system to a pair of pulsed laser beams. Through nondestructive local probe measurements, we introduce an alternative to destructive techniques for mapping Bose-Einstein Condensate (BEC) entanglement. Operating at ultra-low temperatures, BEC density fluctuations emulate a relativistic vacuum field. We show that lasers can serve as Unruh-DeWitt detectors for vacuum BEC phonons. A quantum vacuum holds intrinsic entanglement, transferable to distant probes briefly interacting with it-a phenomenon termed 'entanglement harvesting'. Our study accomplishes two primary objectives: first, establishing a mathematical connection between a pair of pulsed laser probes interacting with an effective relativistic field and the entanglement harvesting protocol; and second, to closely examine the potential and persisting obstacles for realising this protocol in an ultra-cold atom experiment.
引用
收藏
页数:14
相关论文
共 19 条
  • [1] Physics of Ultra-cold and Rydberg Plasmas
    Mendonca, J. T.
    FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS, 2010, 1246 : 36 - 44
  • [2] Dynamic atom optics to produce ultra-slow, ultra-cold helium atoms: Design study and possible applications
    Doak, RB
    Kevern, K
    Chizmeshya, A
    David, R
    Comsa, G
    ATOM OPTICS, 1997, 2995 : 146 - 155
  • [3] Improve the performance of interferometer with ultra-cold atoms
    Dong, Xiangyu
    Jin, Shengjie
    Shui, Hongmian
    Peng, Peng
    Zhou, Xiaoji
    CHINESE PHYSICS B, 2021, 30 (01)
  • [4] Spatial variation effects on quantum theory of the micromaser with ultra-cold Λ-type three-level atom
    Obada, ASF
    Abdel-Aty, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (14): : 2735 - 2747
  • [5] Nanometric Surface Probing through Ultra-Cold Atoms
    Khan, Murtaza Ali
    Schaefer, Florian
    Pernice, Wolfram H. P.
    Cataliotti, Francesco S.
    NONLINEAR OPTICS AND ITS APPLICATIONS VIII; AND QUANTUM OPTICS III, 2014, 9136
  • [6] Precision Minimally-destructive detection of ultra-cold atomic ensembles
    Drougakis, G.
    Vasilakis, G.
    Von Klitzing, W.
    QUANTUM TECHNOLOGIES 2024, 2024, 12993
  • [7] Detection of the clock transition ( 1.14 μm) in ultra-cold thulium atoms
    Golovizin, A. A.
    Kalganova, E. S.
    Sukachev, D. D.
    Vishnyakova, G. A.
    Semerikov, I. A.
    Soshenko, V. V.
    Tregubov, D. O.
    Akimov, A. V.
    Kolachevsky, N. N.
    Khabarova, K. Yu.
    Sorokin, V. N.
    QUANTUM ELECTRONICS, 2015, 45 (05) : 482 - 485
  • [8] Interactions of Ultra-cold Alkaline-earth-like and Alkali Atoms with Light
    Witkowski, M.
    Bober, M.
    Bilicki, S.
    Munoz-Rodriguez, R.
    Singh, V
    Butt, M. A.
    Tonoyan, A.
    Dziczek, D.
    Ciuryo, R.
    Zawada, M.
    PROCEEDINGS OF THE 2019 JOINT CONFERENCE OF THE IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM AND EUROPEAN FREQUENCY AND TIME FORUM (EFTF-IFCS 2019), 2019,
  • [9] FFLO order in ultra-cold atoms in three-dimensional optical lattices
    Rosenberg, Peter
    Chiesa, Simone
    Zhang, Shiwei
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (22)
  • [10] Quantum simulations in phase-space: from quantum optics to ultra-cold physics
    Drummond, Peter D.
    Chaturvedi, Subhash
    PHYSICA SCRIPTA, 2016, 91 (07)