Prediction of ground state charge radius using support vector regression

被引:2
作者
Jalili, Amir [1 ,2 ]
Chen, Ai-Xi [1 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Phys, Hangzhou 310018, Peoples R China
[2] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 10期
基金
中国国家自然科学基金;
关键词
machine learning; support vector regression; RBF; charge radii; FORMULA; MASSES;
D O I
10.1088/1367-2630/ad850e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We systematically investigate the prediction of nuclear charge radii using a support vector regression (SVR) model in machine learning(ML), specifically employing a radial basis function (RBF) kernel. Our model is designed to capture the global structure of the radius surface through the utilization of feature spaces encompassing both (N, Z) and (N, Z, A). We achieved a root mean square deviation of 0.019 fm with respect to 885 measured charge radii (Z >= 8). By incorporating the atomic mass number as an additional feature, the model successfully reproduces the charge radii of ( 40-50 Ca), ( 74-96 Kr), ( 120-148 Ba), and ( 183-199 Au) isotopes. Furthermore, our ML method demonstrated an extrapolation capability with a deviation of 0.016 fm relative to 10 022 calculated charge radii based on the Weizsacker-Skyrme model. The SVR model's performance is further tested across different regions of the charge radii table, demonstrating significant agreement with experimental data and underscoring the efficacy of the RBF kernel in nuclear charge radii prediction.
引用
收藏
页数:11
相关论文
共 59 条
  • [1] Nuclear landscape in covariant density functional theory
    Afanasjev, A. V.
    Agbemava, S. E.
    Ray, D.
    Ring, P.
    [J]. PHYSICS LETTERS B, 2013, 726 (4-5) : 680 - 684
  • [2] Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties
    Agbemava, S. E.
    Afanasjev, A. V.
    Ray, D.
    Ring, P.
    [J]. PHYSICAL REVIEW C, 2014, 89 (05):
  • [3] Odd-even staggering and shell effects of charge radii for nuclei with even Z from 36 to 38 and from 52 to 62
    An, Rong
    Jiang, Xiang
    Cao, Li-Gang
    Zhang, Feng-Shou
    [J]. PHYSICAL REVIEW C, 2022, 105 (01)
  • [4] A consistent set of nuclear rms charge radii:: properties of the radius surface R (N, Z)
    Angeli, I
    [J]. ATOMIC DATA AND NUCLEAR DATA TABLES, 2004, 87 (02) : 185 - 206
  • [5] Table of experimental nuclear ground state charge radii: An update
    Angeli, I.
    Marinova, K. P.
    [J]. ATOMIC DATA AND NUCLEAR DATA TABLES, 2013, 99 (01) : 69 - 95
  • [6] Local relations of nuclear charge radii
    Bao, M.
    Zong, Y. Y.
    Zhao, Y. M.
    Arima, A.
    [J]. PHYSICAL REVIEW C, 2020, 102 (01)
  • [7] NEW PARAMETERS FOR NUCLEAR CHARGE RADIUS FORMULAS
    Bayram, Tuncay
    Akkoyun, Serkan
    Kara, S. Okan
    Sinan, Alper
    [J]. ACTA PHYSICA POLONICA B, 2013, 44 (08): : 1791 - 1799
  • [8] Predictions of nuclear charge radii based on the convolutional neural network
    Cao, Ying-Yu
    Guo, Jian-You
    Zhou, Bo
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2023, 34 (10)
  • [9] Ab initio no-core shell model study of 10-14B isotopes with realistic NN interactions
    Choudhary, Priyanka
    Srivastava, Praveen C.
    Navratil, Petr
    [J]. PHYSICAL REVIEW C, 2020, 102 (04)
  • [10] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411