Weld defect detection of metro vehicle based on improved faster R-CNN

被引:0
|
作者
Zhong, Jiajun [1 ]
He, Deqiang [1 ]
Miao, Jian [1 ]
Chen, Yanjun [1 ]
Yao, Xiaoyang [2 ]
机构
[1] College of Mechanical Engineering, Guangxi University, Nanning,530004, China
[2] CRRC Zhuzhou Institute Co., Ltd, Zhuzhou,412001, China
关键词
D O I
10.19713/j.cnki.43-1423/u.T20190716
中图分类号
学科分类号
摘要
The safety of train operation is seriously threatened by welding defects. In order to solve the problem of missing detection and wrong detection in aluminum alloy body weld of metro vehicles, a method based on improved Faster R-CNN is proposed in this paper. Firstly, the weld defects of aluminum alloy car body were simulated by Abaqus, and several groups of similar defects were obtained. Then, defects are classified based on the Faster R-CNN framework, and Unet model and Resnet model are introduced to improve the original Faster R-CNN framework to improve the recognition accuracy. Finally, the noise signal graph is detected to verify the robustness of the model. The simulation results show that the improved model has a higher recognition rate and robustness for Aluminum car body weld defect detection. © 2020, Central South University Press. All rights reserved.
引用
收藏
页码:996 / 1003
相关论文
共 50 条
  • [1] Insulator Defect Detection Based on Improved Faster R-CNN
    Tang, Jinpeng
    Wang, Jiang
    Wang, Hailin
    Wei, Jiyi
    Wei, Yijian
    Qin, Mingsheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 541 - 546
  • [2] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 83 - 91
  • [3] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 82 - 90
  • [4] Defect Detection of Pantograph Slider Based on Improved Faster R-CNN
    Jiang, Siyang
    Wei, Xiukun
    Yang, Ziming
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5278 - 5283
  • [5] Vehicle Detection Based on Drone Images with the Improved Faster R-CNN
    Wang, Lixin
    Liao, Junguo
    Xu, Chaoqian
    ICMLC 2019: 2019 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2019, : 466 - 471
  • [6] An Improved Faster R-CNN for Steel Surface Defect Detection
    Shi, Xiancong
    Zhou, Sike
    Tai, Yichun
    Wang, Jinzhong
    Wu, Shoucang
    Liu, Jinrong
    Xu, Kun
    Peng, Tao
    Zhang, Zhijiang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [7] Fabric Defect Detection Based on Faster R-CNN
    Liu, Zhoufeng
    Liu, Xianghui
    Li, Chunlei
    Li, Bicao
    Wang, Baorui
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [8] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    Computational Intelligence and Neuroscience, 2022, 2022
  • [9] Mobile Phone Surface Defect Detection Based on Improved Faster R-CNN
    Wang, Tao
    Zhang, Can
    Ding, Runwei
    Yang, Ge
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9371 - 9377
  • [10] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022