Longitudinal monitoring of reconstructed activity concentration on a clinical time-of-flight PET/CT scanner

被引:1
|
作者
MacDonald L.R. [1 ]
Perkins A.E. [2 ]
Tung C.-H. [2 ]
机构
[1] University of Washington, Radiology Department, 1715 Northeast Columbia Road, Box 357987, Seattle, 98195-7987, WA
[2] Philips Healthcare, 595 Miner Road, Highland Heights, 44143, OH
基金
美国国家卫生研究院;
关键词
PET/CT; quality control procedure; quantitative imaging biomarker; quantitative imaging biomarker alliance; SUV variance;
D O I
10.1117/1.JMI.4.1.011004
中图分类号
学科分类号
摘要
Positron emission tomography (PET) images are potential quantitative biomarkers. Understanding long-term (months/years) biomarker variability is important for establishing confidence intervals on studies using such biomarkers over these time frames. PET biomarkers are derived from activity concentration (ρ) extracted from PET images. Over 30 months, we measured the stability of decay-normalized counts (Nn) and ρ by scanning the same 4.5-cm-diameter Ge-68 cylinder weekly, the same Na-22 point source daily, and a refilled 20-cm F-18 cylinder phantom monthly on a clinical TOF-PET/CT scanner. Longitudinal and adjacent-measurement variability was characterized. We found no drift in ρ or Nn for properly calibrated images over 24 months. During this time, ρmean ranged ±5% to 6% for count-matched Ge-68 and F-18 images, with coefficient of variation (COV) across time of 2.3% (Ge-68, 81 scans) and 3.2% (F-18, 24 scans). At typical patient image count levels the Ge-68 ρmean (ρmax) COV across time was 6.9% (9.6%). Changes in ρmean between adjacent F-18 scans (Δdays=34) ranged between ±10%, with corresponding date-matched changes in Ge-68 ρmean ranging ±2%. We recommend (1) tracking trends in Nn with image ρ as a check of quantitative data corrections/calibrations and (2) tracking both mean and COV of ρ (single time point measures) to hundredths precision using standardized uptake values. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
相关论文
共 50 条
  • [1] Time-of-Flight Information Improved the Detectability of Subcentimeter Spheres Using a Clinical PET/CT Scanner
    Hashimoto, Naoki
    Morita, Keishin
    Tsutsui, Yuji
    Himuro, Kazuhiko
    Baba, Shingo
    Sasaki, Masayuki
    JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY, 2018, 46 (03) : 268 - 273
  • [2] Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring
    Iain Murray
    Antonis Kalemis
    Joe Glennon
    Syed Hasan
    Shuaib Quraishi
    Thomas Beyer
    Norbert Avril
    European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37 : 1643 - 1653
  • [3] An Assessment of the Impact of Incorporating Time-of-Flight Information into Clinical PET/CT Imaging
    Lois, Cristina
    Jakoby, Bjoern W.
    Long, Misty J.
    Hubner, Karl F.
    Barker, David W.
    Casey, Michael E.
    Conti, Maurizio
    Panin, Vladimir Y.
    Kadrmas, Dan J.
    Townsend, David W.
    JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (02) : 237 - 245
  • [4] Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring
    Murray, Iain
    Kalemis, Antonis
    Glennon, Joe
    Hasan, Syed
    Quraishi, Shuaib
    Beyer, Thomas
    Avril, Norbert
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (09) : 1643 - 1653
  • [5] Performance of philips gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities
    Surti, Suleman
    Kuhn, Austin
    Werner, Matthew E.
    Perkins, Amy E.
    Kolthammer, Jeffrey
    Karp, Joel S.
    JOURNAL OF NUCLEAR MEDICINE, 2007, 48 (03) : 471 - 480
  • [6] A Clinical and Experimental Comparison of Time of Flight PET/MRI and PET/CT Systems
    Daniela E. Oprea-Lager
    Maqsood Yaqub
    Indra C. Pieters
    Rinze Reinhard
    Reindert J. A. van Moorselaar
    Alfons J. M. van den Eertwegh
    Otto S. Hoekstra
    Adriaan A. Lammertsma
    Ronald Boellaard
    Molecular Imaging and Biology, 2015, 17 : 714 - 725
  • [7] A Clinical and Experimental Comparison of Time of Flight PET/MRI and PET/CT Systems
    Oprea-Lager, Daniela E.
    Yaqub, Maqsood
    Pieters, Indra C.
    Reinhard, Rinze
    van Moorselaar, Reindert J. A.
    van den Eertwegh, Alfons J. M.
    Hoekstra, Otto S.
    Lammertsma, Adriaan A.
    Boellaard, Ronald
    MOLECULAR IMAGING AND BIOLOGY, 2015, 17 (05) : 714 - 725
  • [8] Evaluation of Penalized-Likelihood Estimation Reconstruction on a Digital Time-of-Flight PET/CT Scanner for 18F-FDG Whole-Body Examinations
    Lindstrom, Elin
    Sundin, Anders
    Trampal, Carlos
    Lindsjo, Lars
    Ilan, Ezgi
    Danfors, Torsten
    Antoni, Gunnar
    Sorensen, Jens
    Lubberink, Mark
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (07) : 1152 - 1158
  • [9] Contribution of time of flight and point spread function modeling to the performance characteristics of the PET/CT Biograph mCT scanner
    Marti-Climent, J. M.
    Prieto, E.
    Dominguez-Prado, I.
    Garcia-Velloso, M. J.
    Rodriguez-Fraile, M.
    Arbizu, J.
    Vigil, C.
    Caicedo, C.
    Penuelas, I.
    Richter, J. A.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2013, 32 (01): : 13 - 21
  • [10] Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System
    Hsu, David F. C.
    Ilan, Ezgi
    Peterson, William T.
    Uribe, Jorge
    Lubberink, Mark
    Levin, Craig S.
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (09) : 1511 - 1518