Developing sensitive gas sensor is essential for preventing carbon monoxide poisoning. Current experiments demonstrated excellent performance of Ni-MoO3 as gas sensor, however, atomic-scale sensing mechanism that is critical for developing novel gas sensor is not explored. In this study, adsorption and electronic properties of CH4, H2, CO, H2O, NH3, H2S gases on Ni-doped MoO3 are calculated by first-principles. The CO/Ni-MoO3 system presents the greatest energy of adsorption, the most significant changes in the band gap, and the largest differential charge density, together with the smallest adsorption distance, indicating an intense interaction and chemisorption between CO and Ni-MoO3. Upon the CO adsorption, density of state for Ni-MoO3 descends to a lower energy level, and the increasing in DOS near Fermi level results in a substantial alteration in conductivity. It can be deduced that the Ni-MoO3 system exhibits sensitive and selective detection toward CO gas.