Triple acquisition mass spectrometry (TRAM) combining targeted and non-targeted metabolomics in a single run

被引:0
作者
Panzenboeck, Lisa [1 ,2 ]
Schoeny, Harald [1 ]
Stelzer, Bruno [1 ]
Foels, Elisabeth [1 ,2 ,3 ]
Glas, Marvin [1 ]
Puehringer, Marlene [1 ,2 ]
Hirschmann, Dorian [3 ]
Loetsch, Daniela [3 ]
Dorfer, Christian [3 ]
Rampler, Evelyn [1 ,2 ]
Koellensperger, Gunda [1 ,4 ]
机构
[1] Univ Vienna, Fac Chem, Dept Analyt Chem, Waehringer Str 38, A-1090 Vienna, Austria
[2] Univ Vienna, Vienna Doctoral Sch Chem DoSChem, Waehringer Str 42, A-1090 Vienna, Austria
[3] Med Univ Vienna, Dept Neurosurg, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[4] Univ Vienna, Vienna Metabol Ctr VIME, Althanstr 14, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Targeted metabolomics; Non-targeted metabolomics; Absolute quantification; Liquid chromatography-mass spectrometry; ZenoTOF; 7600; HILIC; Meningioma; QUANTIFICATION; WORKFLOW; COVERAGE;
D O I
10.1016/j.aca.2024.343314
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Background: We introduce TRAM, a triple acquisition strategy on a high-speed quadrupole time-of-flight mass spectrometer for merging non-targeted and targeted metabolomics into one run. TRAM stands for "quasi-simultaneous" acquisition of (1) a full scan MS1, (2) top 30 data-dependent MS2 (DDA), and (3) targeted scheduled MS2 for multiple reaction monitoring (MRM) within measurement cycles of similar to 1 s. TRAM combines the selectivity and sensitivity of state-of-the-art targeted MRM-based methods with the full scope of non-targeted analysis enabled by high-resolution mass spectrometry. Results: In this work, we deploy a workflow based on hydrophilic interaction liquid chromatography (HILIC). For a broad panel of metabolites, we provide chromatographic retention times, and optimized conditions as a basis for targeted MRM experiments, listing accurate masses and sum formulas for fragment ions (including fully C-13 labeled analogs). Validation experiments showed that TRAM offered (1) linear working ranges and limits of quantification comparable to MRM-only methods, (2) enabled accurate quantification in SRM 1950 human plasma reference material, and (3) was equivalent to DDA-only approaches in non-targeted metabolomics. Metabolomics in human cerebrospinal fluid showcased the power of the strategy, emphasizing the need for high coverage/high throughput metabolomics in clinical studies. Significance: Acquiring up to 30 data-dependent spectra per MS cycle while still offering gold standard absolute quantification down to low nanomolar concentrations, TRAM allows in-depth profiling and reduces required sample volume, time, cost, and environmental impact.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
Amer B., 2023, Sci. White Pap., P1
[2]   Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics [J].
Amer, Bashar ;
Deshpande, Rahul R. ;
Bird, Susan S. .
METABOLITES, 2023, 13 (05)
[3]  
Baker P. Rs, 2022, SCIEX Tech. Note, P1
[4]   Metabolomics Test Materials for Quality Control: A Study of a Urine Materials Suite [J].
Bearden, Daniel W. ;
Sheen, David A. ;
Simon-Manso, Yamil ;
Benner, Bruce A., Jr. ;
Rocha, Werickson F. C. ;
Blonder, Niksa ;
Lippa, Katrice A. ;
Beger, Richard D. ;
Schnackenberg, Laura K. ;
Sun, Jinchun ;
Mehta, Khyati Y. ;
Cheema, Amrita K. ;
Gu, Haiwei ;
Marupaka, Ramesh ;
Gowda, G. A. Nagana ;
Raftery, Daniel .
METABOLITES, 2019, 9 (11)
[5]   Metabolomic Profile of Aggressive Meningiomas by Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance [J].
Bender, Laura ;
Somme, Francois ;
Ruhland, Elisa ;
Cicek, A. Ercument ;
Bund, Caroline ;
Namer, Izzie Jacques .
JOURNAL OF PROTEOME RESEARCH, 2020, 19 (01) :292-299
[6]   Current Practices in LC-MS Untargeted Metabolomics: A Scoping Review on the Use of Pooled Quality Control Samples [J].
Broeckling, Corey D. ;
Beger, Richard D. ;
Cheng, Leo L. ;
Cumeras, Raquel ;
Cuthbertson, Daniel J. ;
Dasari, Surendra ;
Davis, W. Clay ;
Dunn, Warwick B. ;
Evans, Anne Marie ;
Fernandez-Ochoa, Alvaro ;
Gika, Helen ;
Goodacre, Royston ;
Goodman, Kelli D. ;
Gouveia, Goncalo J. ;
Hsu, Ping-Ching ;
Kirwan, Jennifer A. ;
Kodra, Dritan ;
Kuligowski, Julia ;
Lan, Renny Shang-Lun ;
Monge, Maria Eugenia ;
Moussa, Laura W. ;
Nair, Sindhu G. ;
Reisdorph, Nichole ;
Sherrod, Stacy D. ;
Ulmer Holland, Candice ;
Vuckovic, Dajana ;
Yu, Li-Rong ;
Zhang, Bo ;
Theodoridis, Georgios ;
Mosley, Jonathan D. .
ANALYTICAL CHEMISTRY, 2023, 95 (51) :18645-18654
[7]   Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics [J].
Cajka, Tomas ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2016, 88 (01) :524-545
[8]   Eight key rules for successful data-dependent acquisition in mass spectrometry-based metabolomics [J].
Defossez, Emmanuel ;
Bourquin, Julien ;
Reuss, Stephan ;
Rasmann, Sergio ;
Glauser, Gaetan .
MASS SPECTROMETRY REVIEWS, 2023, 42 (01) :131-143
[9]   Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry [J].
Di Poto, Cristina ;
Tian, Xiang ;
Peng, Xuejun ;
Heyman, Heino M. ;
Szesny, Matthias ;
Hess, Sonja ;
Cazares, Lisa H. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2021, 32 (08) :2072-2080
[10]   Heterogeneous multimeric metabolite ion species observed in LC-MS based metabolomics data sets [J].
El Abiead, Yasin ;
Bueschl, Christoph ;
Panzenboeck, Lisa ;
Wang, Mingxun ;
Doppler, Maria ;
Seidl, Bernhard ;
Zanghellini, Juergen ;
Dorrestein, Pieter C. ;
Koellensperger, Gunda .
ANALYTICA CHIMICA ACTA, 2022, 1229