Fluidization behavior of stirred gas-solid fluidized beds: A combined X-ray and CFD-DEM-IBM study

被引:0
作者
van der Sande, P. C. [1 ]
de Munck, M. J. A. [2 ]
Wu, K. [1 ]
Rieder, D. R. [2 ]
van den Eertwegh, D. E. A. [2 ]
Wagner, E. C. [1 ]
Meesters, G. M. H. [1 ]
Peters, E. A. J. F. [2 ]
Kuipers, J. A. M. [2 ]
van Ommen, J. R. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, Prod & Proc Engn Grp, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, Multiphase Reactors Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
基金
荷兰研究理事会;
关键词
Fluidized bed; Agitation; CFD-DEM-IBM; X-ray imaging; VSBR; Validation; NUMERICAL-SIMULATION; RECURRENCE CFD; HEAT-TRANSFER; FLOW; PARTICLE; DISPERSE; MODEL;
D O I
10.1016/j.cej.2024.155944
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Stirred gas-solid fluidized bed reactors are commercially employed in polyolefin manufacturing, but the complex gas-solid contacting dynamics pose challenges in design, scale-up, and operation. In this study, the influence of agitation on the fluidization performance of Geldart B particles was investigated experimentally by X-ray imaging and pressure drop measurements and numerically by Computational Fluid Dynamics (CFD)- Discrete Element Method (DEM)- Immersed Boundary Method (IBM). The experimentally obtained minimum fluidization curve and time-averaged pressure drop show good qualitative agreement with the simulation results. Visual observations underscore that an increase in the angular velocity of the agitator results in reduced bubble size and improved bed homogeneity, as further evidenced by reduced pressure fluctuations. Furthermore, the simulations reveal that while the impeller enhances solids agitation, a proper design study is imperative, considering that static immersed bodies, such as the stirrer shaft, can adversely impact solids motion.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] Akenine-Moeller Tomas, 2018, REAL TIME RENDERING, P1
  • [2] Development of a multi-fluid model for poly-disperse dense gas-solid fluidised beds, Part I: Model derivation and numerical implementation
    Annaland, M. van Sint
    Bokkers, G. A.
    Goldschmidt, M. J. V.
    Olaofe, O. O.
    van der Hoef, M. A.
    Kuipers, J. A. M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (20) : 4222 - 4236
  • [3] Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres
    Beetstra, R.
    van der Hoef, M. A.
    Kuipers, J. A. M.
    [J]. AICHE JOURNAL, 2007, 53 (02) : 489 - 501
  • [4] DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES
    CUNDALL, PA
    STRACK, ODL
    [J]. GEOTECHNIQUE, 1979, 29 (01): : 47 - 65
  • [5] CFD-DEM modeling and validation of solids drying in a gas-fluidized bed
    de Munck, M. J. A.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2024, 291
  • [6] CFD-DEM Fluidized Bed Drying Study Using a Coarse-Graining Technique
    de Munck, M. J. A.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (48) : 20911 - 20920
  • [7] Fluidized bed gas-solid heat transfer using a CFD-DEM coarse-graining technique
    de Munck, M. J. A.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [8] A detailed gas-solid fluidized bed comparison study on CFD-DEM coarse-graining techniques
    de Munck, M. J. A.
    van Gelder, J. B.
    Peters, E. A. J. F.
    Kuipers, J. A. M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2023, 269
  • [9] Multi-scale modeling of dispersed gas-liquid two-phase flow
    Deen, NG
    van Sint Annaland, A
    Kuipers, JAM
    [J]. CHEMICAL ENGINEERING SCIENCE, 2004, 59 (8-9) : 1853 - 1861
  • [10] Direct numerical simulation of flow and heat transfer in dense fluid-particle systems
    Deen, Niels G.
    Kriebitzsch, Sebastian H. L.
    van der Hoef, Martin A.
    Kuipers, J. A. M.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2012, 81 : 329 - 344