Synergistic lithiophilic inner layer and nitrogen-riched outer layer in the gradient solid electrolyte interphase to achieve stable lithium metal batteries

被引:2
|
作者
Shi, Yaru [1 ]
Hu, Xiaofeng [1 ]
Zhang, Zheng [1 ]
Sun, Yiwen [1 ]
Xu, Shabei [1 ]
Zhao, Bing [1 ,2 ]
Xu, Yi [1 ]
He, Yaolong [3 ,4 ]
Zhang, Jiujun [2 ]
Jiang, Yong [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[4] Shanghai Univ, Shanghai Frontier Sci Ctr Mechanoinformat, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient solid electrolyte interphase; Cationic shielding effect; DFT calculation; Finite element simulation; 3D lithium anode skeleton; DEPOSITION;
D O I
10.1016/j.cej.2024.157202
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium metal, heralded as the next-generation anode material for energy storage batteries, faces significant challenges in the application of liquid batteries, including the instability of the solid electrolyte interphase (SEI) layer and the uncontrollable growth of lithium dendrites. In this work, we introduce a dual-strategy involving a lithiophilic Ag nanoparticle layer and a multifunctional electrolyte additive to engineer a durable threedimensional (3D) porous copper foam anode skeleton (denoted as Ag@CF-me) with gradient SEI. Density functional theory (DFT) calculations reveal that the strong binding energy of Ag facilitates the uniform nucleation and deposition of lithium. The narrow HOMO-LUMO gap in KNO3 promotes its preferential reduction on lithium anodes, enhancing the formation of a stable, highly conductive nitrogen-riched SEI layer which is conductive to rapid Li+ transport. COMSOL simulations confirm that K+ shielding prevents dendrite growth and encourages uniform lithium deposition. Consequently, the sequential structure of lithiophilic, mechanically robust, and fast ion conduction layers can effectually reduce nucleation overpotential, form electrostatic shielding, and regulate uniform lithium deposition. The half-cells with Ag@CF-me achieve a prolong cycle life of 1000 h at 1 mA cm(- 2), remarkably low overpotential (similar to 6 mV) and high coulombic efficiency (CE, ca. 99.7 % after 600 cycles at 0.5 mA cm(- 2), 1mAh cm(- 2)). The full battery assembled with LiFePO4 (LFP) cathode maintains a capacity retention rate of 90.3 % after 600 cycles at 1C rate. The regulation strategy for constructing gradient SEI layer proposed in this study provides an idea for depositing lithium in a safe location and a facile method for constructing stable lithium metal anode on the 3D skeleton.
引用
收藏
页数:10
相关论文
共 25 条
  • [1] Elongating the cycle life of lithium metal batteries in carbonate electrolyte with gradient solid electrolyte interphase layer
    Lu, Wei
    Sun, Liqun
    Zhao, Yang
    Wu, Tong
    Cong, Lina
    Liu, Jia
    Liu, Yulong
    Xie, Haiming
    ENERGY STORAGE MATERIALS, 2021, 34 : 241 - 249
  • [2] An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
    Li, Nian-Wu
    Yin, Ya-Xia
    Yang, Chun-Peng
    Guo, Yu-Guo
    ADVANCED MATERIALS, 2016, 28 (09) : 1853 - 1858
  • [3] Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer
    Park, Seong-Jin
    Hwang, Jang-Yeon
    Yoon, Chong S.
    Jung, Hun-Gi
    Sun, Yang-Kook
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 17985 - 17993
  • [4] One-Pot Preparation of Lithium Compensation Layer, Lithiophilic Layer, and Artificial Solid Electrolyte Interphase for Lean-Lithium Metal Anode
    Li, Cheng
    Li, Yan
    Yu, Yongkun
    Shen, Chunli
    Zhou, Cheng
    Dong, Chenxu
    Zhao, Tianhao
    Xu, Xu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (17) : 19437 - 19447
  • [5] Constructing a lithiophilic and mixed conductive interphase layer in electrolyte with dual-anion solvation sheath for stable lithium metal anode
    Zhong, Bing
    Wu, Jianyang
    Ren, Longtao
    Zhou, Tianyi
    Zhang, Zhanjun
    Liu, Wen
    Zhou, Henghui
    ENERGY STORAGE MATERIALS, 2022, 50 : 792 - 801
  • [6] Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries
    Shen, Xin
    Cheng, Xinbing
    Shi, Peng
    Huang, Jiaqi
    Zhang, Xueqiang
    Yan, Chong
    Li, Tao
    Zhang, Qiang
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 29 - 34
  • [7] Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
    Zhang, Huimin
    Liao, Xiaobin
    Guan, Yuepeng
    Xiang, Yu
    Li, Meng
    Zhang, Wenfeng
    Zhu, Xiayu
    Ming, Hai
    Lu, Lin
    Qiu, Jingyi
    Huang, Yaqin
    Cao, Gaoping
    Yang, Yusheng
    Mai, Liqiang
    Zhao, Yan
    Zhang, Hao
    NATURE COMMUNICATIONS, 2018, 9
  • [8] A fast ionic conductor and stretchable solid electrolyte artificial interphase layer for Li metal protection in lithium batteries
    Tang, Shun
    Zhang, Xiaokun
    Li, Yan
    Tian, Jie
    Zhao, Yuming
    Mai, Liqiang
    Wang, Lianzhou
    Cao, Yuan-Cheng
    Zhang, Weixin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
  • [9] Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries
    Li, Guoxing
    Gao, Yue
    He, Xin
    Huang, Qingquan
    Chen, Shuru
    Kim, Seong H.
    Wang, Donghai
    NATURE COMMUNICATIONS, 2017, 8
  • [10] Interfacial modification by lithiophilic oxide facilitating uniform and thin solid electrolyte interphase towards stable lithium metal anodes
    Lu, L. Q.
    Pei, Y. T.
    MATERIALS TODAY ENERGY, 2021, 21